Skip to main content
Log in

Comparative Dynamical Study of a Bound Entangled State

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The bound entangled state carries noisy entanglement and it is very hard to distill but the usefulness of bound entangled states has been depicted in different applications. This article represents a comparative dynamical study of an open quantum system for one of the bound entangled states proposed by Bennett et al. The study is conducted under the influence of Heisenberg, bi-linear bi-quadratic and Dzyaloshinskii–Moriya (DM) interaction. During the study, an auxiliary qutrit interacts with one of the qutrits of the selected two qutrit bound entangled state through different interactions. The computable cross-norm or realignment (CCNR) criterion has been used to detect the bound entanglement of the state and the negativity has been applied to measure the free entanglement. From this three-fold study it is observed that, although the auxiliary qutrit plays a significant role during the interaction, the probability amplitude of the qutrit does not affect the open quantum system. Further, it is found that the Dzyaloshinskii–Moriya (DM) interaction performs better to activate the chosen bound entangled state among all the interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81, 865 (2009)

    Article  MATH  ADS  Google Scholar 

  3. Sharma, K.K., Gerdt, V.P., Gerdt, P.V.: Milestone developments in quantum information and No-Go theorems. Lecture Notes in Computer Science book series (LNCS, volume 12563) (2021)

  4. Prakash, H., Chandra, N., Prakash, R., Kumar, S.A.: Entanglement diversion between two pairs of entangled coherent states. Int. J. Mod. Phys. B 23, 585 (2009)

    Article  MATH  ADS  Google Scholar 

  5. Prakash, H., Chandra, N., Prakash, R., Kumar, S.A.: Swapping between two pairs of nonorthogonal entangled coherent states. Int. J. Mod. Phys. B 23, 2083 (2009)

    Article  MATH  ADS  Google Scholar 

  6. Prakash, H., Chandra, N., Prakash, R., Kumar, S.A.: Improving the entanglement diversion between two pairs of entangled coherent states. Int. J. Mod. Phys. B 24, 3331 (2010)

    Article  MATH  ADS  Google Scholar 

  7. Kumar, S.A., Prakash, H., Chandra, N., Prakash, R.: Noise in swapping between two pairs of non-orthogonal entangled coherent states. Mod. Phys. Lett. B 27, 1350017 (2013)

    Article  ADS  Google Scholar 

  8. Sharma, K.K., Gerdt, V.P.: Quantum information scrambling and entanglement in bipartite quantum states. Quantum Inf. Process 20, 195 (2021)

    Article  ADS  Google Scholar 

  9. Shukla, P., Kumar, S.A., Kanwar, S.: Interaction of light with matter: nonclassical phenomenon. Physics and Chemistry of Solid State 23, 5 (2022)

    Article  Google Scholar 

  10. Horodecki, P., Horodecki, R.: Distillation and bound entanglement. Quant. Info. Comp. 1, 45 (2001)

    MATH  Google Scholar 

  11. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  MATH  ADS  Google Scholar 

  12. Bouwmeester, D., Pan, J., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390, 575 (1997)

    Article  MATH  ADS  Google Scholar 

  13. Boschi, D., Branca, S., De Martini, F., Hardy, L., Popescu, S.: Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 80, 1121 (1998)

    Article  MATH  ADS  Google Scholar 

  14. Prakash, H., Chandra, N., Prakash, R.: Shivani, improving the teleportation of entangled coherent states. Phys. Rev. A 75, 044305 (2007)

    Article  ADS  Google Scholar 

  15. Prakash, H., Chandra, N., Prakash, R.: Shivani, effect of decoherence on fidelity in teleportation using entangled coherent states. J. Phys. B: At. Mol. Opt. Phys. 40, 1613 (2007)

    Article  ADS  Google Scholar 

  16. Prakash, H., Chandra, N., Prakash, R.: Shivani, effect of decoherence on fidelity in teleportation of entangled coherent states. Int. J. Quantum Inform. 6, 1077 (2008)

    Article  MATH  Google Scholar 

  17. Prakash, H., Chandra, N., Prakash, R.: Shivani, almost perfect teleportation using 4-partite entangled states. Int. J. Mod. Phys. B 24, 3383 (2010)

    Article  MATH  ADS  Google Scholar 

  18. Kumar, S.A.: almost perfect teleportation of entangled coherent States. In: International Conference on Fibre Optics and Photonics, OSA Technical Digest (online) (Optica Publishing Group), paper WPo.8 (2012)

  19. Kumar, S.A.: Quantum teleportation of a tripartite entangled coherent state. Mod. Phys. Lett. A 36, 2150217 (2021)

    Article  MATH  ADS  Google Scholar 

  20. Kumar, S.A., Kanwar, S., Shukla, P.: Entangled coherent states in teleportation. East European J. Phys. 3, 39 (2022)

    Article  Google Scholar 

  21. Kumar, S.A.: Study of minimum assured fidelity in teleportation. Nonlinear Optics Quantum Optics 56, 245 (2022)

    Google Scholar 

  22. Ekert, A.K.: Quantum cryptography based on bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  MATH  ADS  Google Scholar 

  23. Bennett, C.H., Bessette, F., Brassard, G., Salvail, L., Smolin, J.: Experimental quantum cryptography. J. Cryptology 5, 3 (1992)

    Article  MATH  Google Scholar 

  24. Degen, C.L., Reinhard, F., Cappellaro, P.: Quantum sensing. Rev. Mod. Phys. 89, 035002 (2017)

    Article  ADS  Google Scholar 

  25. Lugiato, L.A., Gatti, A., Brambilla, E.: Quantum imaging. J. Opt. B: Quantum Semiclass. Opt 4, S176 (2002)

    Article  ADS  Google Scholar 

  26. Meyer, D.A.: Quantum strategies. Phys. Rev. Lett. 82, 1052 (1999)

    Article  MATH  ADS  Google Scholar 

  27. Horodecki, K., Horodecki, M., Horodecki, P., Oppenheim, J.: Secure key from bound entanglement. Phys. Rev. Lett. 94, 160502 (2005)

    Article  MATH  ADS  Google Scholar 

  28. Chattopadhyay, I., Sarkar, D.: Local indistinguishability and possibility of hiding Cbits in activable bound entangled states. Phys. Lett A 365, 273 (2007)

    Article  MATH  ADS  Google Scholar 

  29. Augusiak, R., Horodecki, P.: Generalized Smolin states and their properties. Phys. Rev. A 73, 012318 (2018)

    Article  ADS  Google Scholar 

  30. Epping, M., Brukner, C.: Bound entanglement helps to reduce communication complexity. Phys. Rev. A 87, 032305 (2013)

    Article  ADS  Google Scholar 

  31. Horodecki, P., Horodecki, M., Horodecki, R.: Bound entanglement can be activated. Phys. Rev. Lett. 82, 1056 (1999)

    Article  MATH  ADS  Google Scholar 

  32. Masanes, L.: All bipartite entangled states are useful for information processing. Phys. Rev. Lett. 96, 150501 (2006)

    Article  MATH  ADS  Google Scholar 

  33. Horodecki, M., Horodecki, P., Horodecki, R.: Mixed-state entanglement and distillation: is there a “bound” entanglement in nature. Phys. Rev. Lett. 80, 5239 (1998)

    Article  MATH  ADS  Google Scholar 

  34. Bennett, C.H., DiVincenzo, D.P., Mor, T., Shor, P.W., Smolin, J.A., Terhal, B.M.: Unextendible product bases and bound entanglement. Phys. Rev. Lett. 82, 5385 (1999)

    Article  MATH  ADS  Google Scholar 

  35. Jurkowski, J., Chruscinski, D., Rutkowski, A.: A class of bound entangled states of two qutrits. Open Syst. Inf. Dyn. 16, 235 (2009)

    Article  MATH  Google Scholar 

  36. Amselem, E., Bourennane, M.: Experimental four-qubit bound entanglement. Nature Phys. 5, 748 (2009)

    Article  ADS  Google Scholar 

  37. Lavoie, J., Kaltenbaek, R., Piani, M., Resch, K.J.: Experimental bound entanglement in a four-photon state. Phys. Rev. Lett. 105, 130501 (2010)

    Article  ADS  Google Scholar 

  38. Kaneda, F., Shimizu, R., Ishizaka, S., Mitsumori, Y., Kosaka, H., Edamatsu, K.: Experimental activation of bound entanglement. Phys. Rev. Lett. 109, 040501 (2012)

    Article  ADS  Google Scholar 

  39. Amselem, E., Sadiq, M., Bourennane, M.: Experimental bound entanglement through a pauli channel. Sci. Rep. 3, 1966 (2013)

    Article  ADS  Google Scholar 

  40. Guo-Qiang, Z., Xiao-Guang, W.: Quantum dynamics of bound entangled states. Commun. Theor. Phys. 49, 343 (2008)

    Article  MATH  ADS  Google Scholar 

  41. Baghbanzadeh, S., Rezakhani, A.T.: Distillation of free entanglement from bound entangled states using weak measurements. Phys. Rev. A 88, 062320 (2013)

    Article  ADS  Google Scholar 

  42. Sharma, K.K., Pandey, S.N.: Dzyaloshinskii–Moriya interaction as an agent to free the bound entangled states. Quantum Inf. Process. 15, 1539 (2016)

    Article  MATH  ADS  Google Scholar 

  43. Sharma, K.K., Sinha, S., Chandra, K.: Efficacy of moriya interaction to free the bound entangled state. Quantum Inf. Process. 21, 21 (2022)

    Article  MATH  ADS  Google Scholar 

  44. Plenio, M.B., Virmani, S.: An introduction to entanglement measures. Quant. Inf. Comput. 7, 1 (2007)

    MATH  Google Scholar 

  45. Vidal, G., Werner, R.F.: Computable measure of entanglement. Phys. Rev. A 65, 032314 (2002)

    Article  ADS  Google Scholar 

  46. Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77, 1413 (1996)

    Article  MATH  ADS  Google Scholar 

  47. Horodecki, P.: Separability criterion and inseparable mixed states with positive partial transposition. Phys. Lett. A 232, 333 (1997)

    Article  MATH  ADS  Google Scholar 

  48. Chen, K., Wu, L: The generalized partial transposition criterion for separability of multipartite quantum states. Phys. Lett. A 306, 14 (2002)

    Article  MATH  ADS  Google Scholar 

  49. Rudolph, O.: Further results on the cross norm criterion for separability. Quantum Inf. Process. 4, 219 (2005)

    Article  MATH  Google Scholar 

  50. Zhang, C., Zhang, Y., Zhang, S., Guo, G.: Entanglement detection beyond the computable cross-norm or realignment criterion. Phys. Rev. A 77(R), 060301 (2008)

    Article  ADS  Google Scholar 

  51. Bonner, J.C.: Generalized Heisenberg quantum spin chains (invited). J. Appl. Phys. 61, 3941 (1987)

    Article  ADS  Google Scholar 

  52. Wang, X., Li, H., Sun, Z., Li, Y.: Entanglement in spin-1 heisenberg chains. J. Phys. A: Math. Gen. 38, 8703 (2005)

    Article  MATH  ADS  Google Scholar 

  53. Da Silva, S.L.L.: Entanglement of Spin-1/2 Heisenberg Antiferromagnetic Quantum Spin Chains, arXiv:1605.04373 (2016)

  54. Läuchli, A., Schmid, G., Trebst, S.: Spin nematics correlations in bilinear-biquadratic S = 1 spin chains. Phys. Rev. B 74, 144426 (2006)

    Article  ADS  Google Scholar 

  55. Niesen, I., Corboz, P.: Ground-state study of the spin-1 bilinear-biquadratic heisenberg model on the triangular lattice using tensor networks. Phys. Rev. B 97, 245146 (2018)

    Article  ADS  Google Scholar 

  56. Dzyaloshinsky, I.: A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics. J. Phys. Chem. Solids 4, 241 (1958)

    Article  ADS  Google Scholar 

  57. Moriya, T.: New mechanism of anisotropic superexchange interaction. Phys. Rev. Lett. 4, 228 (1960)

    Article  ADS  Google Scholar 

  58. Moriya, T.: Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120, 91 (1960)

    Article  ADS  Google Scholar 

  59. Sharma, K.K., Awasthi, S.K., Pandey, S.N.: Entanglement sudden death and birth in Qubit-Qutrit systems under Dzyaloshinskii-Moriya interaction. Quantum Inf. Process. 12, 3437 (2013)

    Article  MATH  ADS  Google Scholar 

  60. Sharma, K.K., Pandey, S.N.: Entanglement dynamics in two parameter Qubit-Qutrit states under Dzyaloshinskii-Moriya interaction. Quantum Inf. Process. 13, 2017 (2014)

    Article  MATH  ADS  Google Scholar 

  61. Sharma, K.K., Pandey, S.N.: Influence of Dzyaloshinshkii–Moriya interaction on quantum correlations in Two-Qubit werner states and MEMS. Quantum Inf. Process. 14, 1361 (2015)

    Article  MATH  ADS  Google Scholar 

  62. Sharma, K.K., Pandey, S.N.: Dynamics of entanglement in Qubit-Qutrit with X-Component of DM interaction. Commun. Theor. Phys. 65, 278 (2016)

    Article  ADS  Google Scholar 

  63. Sharma, K.K., Pandey, S.N.: Robustness of Greenberger-Horne-Zeilinger and W states against Dzyaloshinskii-Moriya interaction. Quantum Inf. Process. 15, 4995 (2016)

    Article  MATH  ADS  Google Scholar 

  64. Rakov, M.V., Weyrauch, M.: Bilinear-biquadratic Spin-1 Rings: an SU(2)-symmetric MPS algorithm for periodic boundary conditions. J. Phys. Commun. 1, 015007 (2017)

    Article  Google Scholar 

  65. Jakab, D., Szirmai, G., Zimborás, Z.: The Bilinear–biquadratic model on the complete graph. J. Phys. A: Math. Theor. 51, 105201 (2018)

    Article  MATH  ADS  Google Scholar 

  66. Chiesa, A., Tacchino, F., Grossi, M., Santini, P., Tavernelli, I., Gerace, D., Carretta, S.: Quantum hardware simulating four-dimensional inelastic neutron scattering. Nat. Phys. 15, 455 (2019)

    Article  Google Scholar 

  67. Smith, A., Kim, M.S., Pollmann, F., Knolle, J.: Simulating quantum many-body dynamics on a current digital quantum computer. npj Quantum Inf. 5, 106 (2019)

    Article  ADS  Google Scholar 

  68. Sharma, K.K., Sinha, S.: Trade-off between squashed entanglement and concurrence in bipartite quantum states. Int. J. Theor Phys. 60, 3651 (2021)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Suprabhat Sinha.

Additional information

Data availability

This article has no associated data.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sinha, S. Comparative Dynamical Study of a Bound Entangled State. Int J Theor Phys 62, 9 (2023). https://doi.org/10.1007/s10773-022-05269-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-05269-6

Keywords

Navigation