Skip to main content
Log in

The Intrinsic Decoherence Effects on Nonclassical Correlations in a Dipole-Dipole Two-Spin System with Dzyaloshinsky-Moriya Interaction

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

A Correction to this article was published on 23 January 2023

This article has been updated

Abstract

Bipolar spin systems are expected to provide a reliable and scalable platform for advances in quantum computing and nanotechnology. Thus, the survey of the dynamics of the quantum properties of such systems is of paramount importance. This work explores the dynamics of bipartite entanglement and nonclassical correlations in a dipole-dipole two spin system with Dzyaloshinsky-Moriya (DM) interaction and under the influence of the intrinsic decoherence effects. We employ logarithmic negativity to quantify quantum entanglement. Local quantum uncertainty and quantum discord are employed to capture non-classical correlations beyond entanglement in the considered system. For this purpose, we consider that the system is initially prepared in a Werner state and we explore the effect of intrinsic decoherence rate, dipolar coupling parameters between the spins, strength of the Dzyaloshinsky-Moriya interaction and the intensities of the homogeneous magnetic fields on the dynamics of the three quantifiers of correlations within the considered system. The findings reveal that intrinsic decoherence deteriorates quantum correlations, while the dipolar coupling constant diminishes the oscillatory behavior observed but enhances the robustness of bipartite entanglement and nonclassical correlations. The negative effects of the intrinsic decoherence on the quantum correlations can be mitigated by adjusting the values of the system’s parameters as well as the Dzyaloshinsky-Moriya coupling parameter. We also show that the three studied measures behave quasi-similarly. Finally, we depict that the amounts of entanglement and nonclassical correlations within the system are closely tied to the system’s degree of purity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Change history

References

  1. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein–Podolsky–Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MATH  Google Scholar 

  2. Huang, H.L.: Quantum teleportation via a two-qubit Ising Heisenberg chain with an arbitrary magnetic field. Int. J. Theor. Phys. 50, 70–79 (2011)

    Article  MATH  Google Scholar 

  3. Fouokeng, G.C., Tedong, E., Tene, A.G., Tchoffo, M., Fai, L.C.: Teleportation of single and bipartite states via a two qubits XXZ Heisenberg spin chain in a non-Markovian environment. Phy. Lett. A. 384, 126719 (2020)

    Article  MATH  Google Scholar 

  4. Bennett, C.H., Wiesner, S.J.: Communication via one- and two particle oprators on Einstein–Podolsky–Rosen states. Phys. Rev Lett. 69, 20 (1992)

    Article  MATH  Google Scholar 

  5. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MATH  Google Scholar 

  6. Mansour, M., Dahbi, Z.: Quantum secret sharing protocol using maximally entangled multi-qudit states. Int. J. Theor. Phys. 59(12), 3876–3887 (2020)

    Article  MATH  Google Scholar 

  7. Ollivier, H., Zurek, W.H.: Quantum discord: a measure of the quantumness of correlations. Phys. Rev. Lett. 88, 017901 (2001)

    Article  ADS  MATH  Google Scholar 

  8. Henderson, L., Vedral, V.: Classical, quantum and total correlations. J. Phys. A: Math. Gen. 34(35), 6899 (2001)

    Article  ADS  MATH  Google Scholar 

  9. Wang, C.Z., Li, C.X., Nie, L.Y., Li, J.F.: Classical correlation and quantum discord mediated by cavity in two coupled qubits. J. Phys. B: At. Mol. Opt. Phys. 44(1), 015503 (2001)

    Article  ADS  Google Scholar 

  10. Chen, Q., Zhang, C., Yu, S., Yi, X.X., Oh, C.H.: Quantum discord of two-qubit X states. Phys. Rev. A 84(4), 042313 (2011)

    Article  ADS  Google Scholar 

  11. Mazumdar, S., Dutta, S., Guha, P.: Sharma–Mittal quantum discord. Quant. Inf. Process. 18(6), 1–26 (2019)

    Article  MATH  Google Scholar 

  12. Haddadi, S., Pourkarimi, M.R., Akhound, A., Ghominejad, M.: Thermal quantum correlations in a two-dimensional spin star model. Mod. Phys. Lett. A 34(22), 1950175 (2019)

    Article  ADS  MATH  Google Scholar 

  13. Girolami, D., Tufarelli, T., Adesso, G.: Characterizing nonclassical correlations via local quantum uncertainty. Phys. Rev. Lett. 110, 240402 (2013)

    Article  ADS  Google Scholar 

  14. Wigner, E.P., Yanase, M.M.: Information contents of distributions. Proc. Natl. Acad. Sci. U.S.A. 49(6), 910–918 (1963)

    Article  ADS  MATH  Google Scholar 

  15. Luo, S.: Wigner-Yanase skew information and uncertainty relations. Phys. Rev. Lett. 91(18), 180403 (2003)

    Article  ADS  Google Scholar 

  16. Sbiri, A., Mansour, M., Oulouda, Y.: Local quantum uncertainty versus negativity through Gisin states. Int. J. Qua. Inf. 19, 05 (2021)

    MATH  Google Scholar 

  17. Essakhi, M., Khedif, Y., Mansour, M., et al.: Non-classical correlations in multipartite generalized coherent States. Braz. J. Phys. 52, 124 (2022). https://doi.org/10.1007/s13538-022-01119-2

    Article  ADS  Google Scholar 

  18. Sbiri, A., Oumennana, M., Mansour, M.: Thermal quantum correlations in a two-qubit Heisenberg model under Calogero–Moser and Dzyaloshinsky–Moriya interactions. Mod. Phys. Lett. B. 36(09), 2150618 (2022)

    Article  ADS  Google Scholar 

  19. Yang, C., Guo, Y.N., Peng, H.P., Lu, Y.B.: Dynamics of local quantum uncertainty for a two-qubit system under dephasing noise. Laser. Phys. 30, 015203 (2019)

    Article  ADS  Google Scholar 

  20. Chen, Z.: Wigner-yanase skew information as tests for quantum entanglement. Phys. Rev. A. 71, 052302 (2005)

    Article  ADS  Google Scholar 

  21. Elghaayda, S., Dahbi, Z., Mansour, M.: Local quantum uncertainty and local quantum Fisher information in two-coupled double quantum dots. Opt. Quant. Electron. 54, 419 (2022)

    Article  Google Scholar 

  22. Caves, C.M., Milburn, G.J.: Quantum-mechanical model for continuous position measurements. Phys. Rev. D 36(12), 5543 (1987)

    Article  ADS  Google Scholar 

  23. Milburn, G.J.: Intrinsic decoherence in quantum mechanics. Phys. Rev. A 44(9), 5401 (1991)

    Article  ADS  Google Scholar 

  24. Ghirardi, G.C., Rimini, A., Weber, T.: Unified dynamics for microscopic and macroscopic systems. Phys. Rev. D 34(2), 470 (1986)

    Article  ADS  MATH  Google Scholar 

  25. Diosi, L.: Models for universal reduction of macroscopic quantum fluctuations. Phys. Rev. A 40(3), 1165 (1989)

    Article  ADS  Google Scholar 

  26. Ghirardi, G.C., Pearle, P., Rimini, A.: Markov processes in Hilbert space and continuous spontaneous localization of systems of identical particles. Phys. Rev. A 42(1), 78 (1990)

    Article  ADS  Google Scholar 

  27. Ellis, J., Mohanty, S., Nanopaulos, D.: Quantum gravity and the collapse of the wavefunction. Phys. Lett. B 221(2), 113–119 (1989)

    Article  ADS  Google Scholar 

  28. He, Z., Xiong, Z., Zhang, Y.: Influence of intrinsic decoherence on quantum teleportation via Two-Qubit heisenberg (XYZ) chain. Phys. Lett. A 354 (1-2), 79–83 (2006)

    Article  ADS  Google Scholar 

  29. Abdel-Aty, M.: New features of total correlations in coupled Josephson charge qubits with intrinsic decoherence. Phys. Lett. A 372(20), 3719–3724 (2008)

    Article  ADS  MATH  Google Scholar 

  30. Liang, Q., An-Min, W., Xiao-San, M.: Effect of intrinsic decoherence of milburn’s model on entanglement of Two-Qutrit states. Commun. Theor. Phys. 49(2), 516 (2008)

    Article  ADS  MATH  Google Scholar 

  31. Plenio, M.B., Knight, P.L.: Decoherence limits to quantum computation using trapped ions. Proc. Roy. Soc. Lond. A 453(1965), 2017–2041 (1997)

    Article  ADS  Google Scholar 

  32. Kuang, L.M., Chen, X., Ge, M.L.: Influence of intrinsic decoherence on nonclassical effects in the multiphoton Jaynes-Cummings model. Phys. Rev. A 52(3), 1857 (1995)

    Article  ADS  Google Scholar 

  33. Buz̆ek, V., Konôpka, M.: Dynamics of open systems governed by the Milburn equation. Phys. Rev. A 58(3), 1735 (1998)

    Article  ADS  Google Scholar 

  34. Essakhi, M., Khedif, Y., Mansour, M., Daoud, M.: Intrinsic decoherence effects on quantum correlations dynamics. Opt. Quant. Electron. 54, 103 (2022)

    Article  Google Scholar 

  35. Chaouki, E, Dahbi, Z., Mansour, M.: Dynamics of quantum correlations in a quantum dot system with intrinsic decoherence effects. Int. J. Mod. Phys. B 36(22), 2250141 (2022)

    Article  ADS  Google Scholar 

  36. Furman, G.B., Meerovich, V.M., Sokolovsky, V.L.: Entanglement of dipolar coupling spins. Quant. Inf. Process. 10(3), 307–315 (2011)

    Article  MATH  Google Scholar 

  37. Furman, G.B., Meerovich, V.M., Sokolovsky, V.L.: Entanglement in dipolar coupling spin system in equilibrium state. Quant. Inf. Process. 11(6), 1603–1617 (2012)

    Article  ADS  MATH  Google Scholar 

  38. Yun, S.J., Kim, J., Nam, C.H.: Ising interaction between two qubits composed of the highest magnetic quantum number states through magnetic dipole–dipole interaction. J. Phys. B 48(7), 075501 (2015)

    Article  ADS  Google Scholar 

  39. Dolde, F., Jakobi, I., Naydenova, B., Zhao, N., Pezzagna, S., Trautmann, C., Meijer, J., Neumann, P., Jelezko, F.: Room-temperature entanglement between single defect spins in diamond. Nat. Phys. 9(3), 139–143 (2013)

    Article  Google Scholar 

  40. Choi, J., Zhou, H., Choi, S., Landig, R., Ho, W.W., Isoya, J., et al.: Probing quantum thermalization of a disordered dipolar spin ensemble with discrete time-crystalline order. Phys. Rev. Lett. 122(4), 043603 (2019)

    Article  ADS  Google Scholar 

  41. Gottesman, D., Chuang, I.L.: Demonstrating the viability of universal quantum computation using teleportation and single-qubit operations. Nature 402 (6760), 390–393 (1999)

    Article  ADS  Google Scholar 

  42. Castro, C.S., et al.: Thermal entanglement and teleportation in a dipolar interacting system. Phys. Lett. A 380(18-19), 1571–1576 (2016)

    Article  ADS  Google Scholar 

  43. Grimaudo, R., Messina, A., Nakazato, H.: Exactly solvable time-dependent models of two interacting two-level systems. Phys. Rev. A. 94(2), 022108 (2016)

    Article  ADS  Google Scholar 

  44. Khedr, A.N., Mohamed, A.B.A., Abdel-Aty, A.H., Tammam, M., Abdel-Aty, M., Eleuch, H.: Entropic uncertainty for two coupled dipole spins using quantum memory under the Dzyaloshinskii–Moriya interaction. Entropy 23(12), 1595 (2021)

    Article  ADS  Google Scholar 

  45. Kuznetsova, E. I., Yurischev, M. A.: Quantum discord in spin systems with dipole–dipole interaction. Quant. Inf. Process. 12(11), 3587–3605 (2013)

    Article  ADS  MATH  Google Scholar 

  46. Werner, R.F.: Quantum states with Einstein-Podolsky-Rosen correlations admitting a hidden-variable model. Phy. Rev. A. 40(8), 4277 (1989)

    Article  ADS  MATH  Google Scholar 

  47. Sharma, K.K., Pandey, S.N.: Influence of Dzyaloshinshkii–Moriya interaction on quantum correlations in two-qubit Werner states and MEMS. Quantum Inf. Process. 14(4), 1361–1375 (2015)

    Article  ADS  MATH  Google Scholar 

  48. Dzyaloshinsky, I.: A thermodynamic theory of “weak” ferromagnetism of antiferromagnetics. J. Phys Chem. Solids 4(4), 241–255 (1958)

    Article  ADS  Google Scholar 

  49. Moriya, T.: Anisotropic superexchange interaction and weak ferromagnetism. Phys. Rev. 120(1), 91 (1960)

    Article  ADS  Google Scholar 

  50. Li, D.C., Cao, Z.L.: Entanglement in the anisotropic Heisenberg XYZ model with different Dzyaloshinskii-Moriya interaction and inhomogeneous magnetic field. Eur. Phys. J. D. 50(2), 207–214 (2008)

    Article  ADS  Google Scholar 

  51. Oumennana, M., Dahbi, Z., Mansour, M., Khedif, Y.: Geometric measures of quantum correlations in a two-qubit heisenberg xxz model under multiple interactions effects. J. Russ. Laser Res. 43(5), 533–545 (2022)

    Article  Google Scholar 

  52. Oumennana, M., Rahman, A.U., Mansour, M.: Quantum coherence versus non-classical correlations in xxz spin-chain under dzyaloshinsky–moriya (dm) and ksea interactions. Appl. Phys. B 128(9), 1–13 (2022)

    Article  Google Scholar 

  53. Ozaydin, F., Altintas, A.A.: Quantum metrology: surpassing the shot-noise limit with Dzyaloshinskii-Moriya interaction. Sci. Rep. 5, 16360 (2015)

    Article  ADS  Google Scholar 

  54. Ozaydin, F., Altintas, A.A.: Parameter estimation with Dzyaloshinskii–Moriya interaction under external magnetic fields. Opt. Quant. Electron. 52, 70 (2020)

    Article  Google Scholar 

  55. Upadhyay, V., Naseem, M.T., Marathe, R., Müstecaplıoğlu, Ö. E.: Heat rectification by two qubits coupled with Dzyaloshinskii-Moriya interaction. Phys. Rev. E. 104(5), 054137 (2021)

    Article  ADS  Google Scholar 

  56. Ozaydin, F.: Quantum pseudo-telepathy in spin systems: the magic square game under magnetic fields and the Dzyaloshinskii–Moriya interaction. Laser Phys. 30(2), 025203 (2020)

    Article  ADS  Google Scholar 

  57. Vedral, V.: The role of relative entropy in quantum information theory. Rev. Mod. Phys. 74(1), 197 (2002)

    Article  ADS  MATH  Google Scholar 

  58. Plenio, M. B.: Logarithmic negativity: a full entanglement monotone that is not convex. Phys. Rev. Lett. 95(9), 090503 (2005)

    Article  ADS  Google Scholar 

  59. Peres, A.: Separability criterion for density matrices. Phys. Rev. Lett. 77(8), 1413 (1996)

    Article  ADS  MATH  Google Scholar 

  60. Horodecki, M., Horodecki, P., Horodecki, R.: Separability of n-particle mixed states: necessary and sufficient conditions in terms of linear maps. Phys. Lett. A 283(1-2), 1–7 (2001)

    Article  ADS  MATH  Google Scholar 

  61. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  62. Karpat, G., Çakmak, B., Fanchini, F.F.: Quantum coherence and uncertainty in the anisotropic XY chain. Phys. Rev. B. 90(10), 104431 (2014)

    Article  ADS  Google Scholar 

  63. Guo, J.L., Wei, J.L., Qin, W., Mu, Q.X.: Examining quantum correlations in the XY spin chain by local quantum uncertainty. Quant. Inf. Process. 14(4), 1429–1442 (2015)

    Article  ADS  MATH  Google Scholar 

  64. Wang, C.-Z., Li, C.-X., Nie, L.-Y., Li, J.-F.: Classical correlation and quantum discord mediated by cavity in two coupled qubits. J. Phys. B At. Mol. Opt. Phys. 44(1), 015503 (2011)

    Article  ADS  Google Scholar 

  65. Ali, M., Rau, A.R.P., Alber, G.: Erratum: Quantum discord for two-qubit X states [Phys. Rev. A 81, 042105 (2010)]. Phys. Rev. A, 82(6), 069902 (2010)

    Article  ADS  Google Scholar 

  66. Reis, M. S.: Fundamentals of Magnetism. Elsevier, New York (2013)

    Google Scholar 

  67. Ban, M., Kitajima, S., Shibata, F.: Quantum master equation approach to dynamical suppression of decoherence. J. Phys. B: At. Mol. Opt. Phys. 40 (13), 2641 (2007)

    Article  ADS  Google Scholar 

  68. Bose, S.: Quantum communication through an unmodulated spin chain. Phys. Rev. Lett. 91, 207901 (2003)

    Article  ADS  Google Scholar 

  69. Guo, J.L., Song, H.S.: Effects of inhomogeneous magnetic field on entanglement and teleportation in a two-qubit Heisenberg XXZ chain with intrinsic decoherence. Phys. Scr. 78, 045002 (2008)

    Article  ADS  MATH  Google Scholar 

  70. Barbieri, M., De Martini, F., Di Nepi, G., Mataloni, P.: Generation and characterization of Werner states and maximally entangled mixed states by a universal source of entanglement. Phys. Rev. Lett. 92(17), 177901 (2004)

    Article  ADS  Google Scholar 

  71. Vértesi, T.: More efficient Bell inequalities for Werner states. Phys. Rev. A. 78(3), 032112 (2008)

    Article  ADS  Google Scholar 

  72. Chȩogoncińska, A., Wodkiewicz, K.: Separability of entangled qutrits in noisy channels. Phys. Rev. A. 76(5), 052306 (2007)

    Article  ADS  Google Scholar 

  73. Bennett, C.H., DiVincenzo, D.P., Smolin, J.A., Wootters, W.K.: Mixed-state entanglement and quantum error correction. Phys. Rev. A. 54(5), 3824 (1996)

    Article  ADS  MATH  Google Scholar 

  74. Guo, Y.N., Peng, H.P., Tian, Q.L., Tan, Z.G., Chen, Y.: Local quantum uncertainty in a two-qubit Heisenberg spin chain with intrinsic decoherence. Phys. Scr. 96(7), 075101 (2021)

    Article  ADS  Google Scholar 

Download references

Acknowledgment

M.O. acknowledges the financial support received from the National Center for Scientific and Technical Research (CNRST) under the Program of Excellence Grants for Research.

Author information

Authors and Affiliations

Authors

Contributions

M.M. has put forward the idea of the manuscript. E.C. and M.O. performed the computations and graphical tasks. M.O. and M.M. have contributed to interpreting the results. M.M. supervised the findings of this work. All authors have contributed to writing the manuscript. All authors have read and agreed to the final version of the manuscript.

Corresponding author

Correspondence to Mostafa Mansour.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

There has been a misplacement in the images of Figures 1, 2, 4, 6 and 7 in the published version of the article.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oumennana, M., Chaouki, E. & Mansour, M. The Intrinsic Decoherence Effects on Nonclassical Correlations in a Dipole-Dipole Two-Spin System with Dzyaloshinsky-Moriya Interaction. Int J Theor Phys 62, 10 (2023). https://doi.org/10.1007/s10773-022-05255-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-05255-y

Keywords

Navigation