Skip to main content
Log in

Geometric Phase for Two-Mode Entangled Coherent States

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper, the geometric phase (GP) of a superposition state of two bipartite pure states is formulated. Specially, we have focused on the GP of superposition states with two-bipartite pure coherent states. We have investigated under which conditions the superposition term in the dynamical phase expression can be removed. We have calculated the cyclic GP of two-mode balanced and unbalanced entangled coherent states (ECSs), undergoing a unitary evolution and the results are discussed. Similar to the concurrence measure which can be used to determine the degree of entanglement of quantum states, it is demonstrated that the dynamical phase of the introduced states can also be a witness to the quantum entanglement. It is found out that the responses of dynamical phase and concurrence to the evolution of a model parameter are opposite to each other, i.e. an increase in one of them is accompanied by a decrease in the other. In addition, it is shown that these two states are local unitary equivalent. Finally, we suggest an experimental interferometry setup to produce the evolved ECS for the balanced states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Berry, M.V.: Quantal phase factors accompanying adiabatic changes. Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences 392(1802), 45–57 (1984)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Wilczek, F., Zee, A.: Appearance of gauge structure in simple dynamical systems. Phys. Rev. Lett. 52(24), 2111 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  3. Aharonov, Y., Anandan, J.: Phase change during a cyclic quantum evolution. Phys. Rev. Lett. 58(16), 1593 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  4. Samuel, J., Bhandari, R.: General setting for berry’s phase. Phys. Rev. Lett. 60(23), 2339 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  5. Mukunda, N., Simon, R.: Quantum kinematic approach to the geometric phase. i. general formalism. Ann. Phys. 228(2), 205–268 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Uhlmann, A.: Parallel transport and quantum holonomy along density operators. Reports on Mathematical Physics 24(2), 229–240 (1986)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Sjöqvist, E.: Geometric phase for entangled spin pairs. Phys. Rev. A 62(2), 022109 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  8. Carollo, A., Fuentes-Guridi, I., Santos, M.F., Vedral, V.: Geometric phase in open systems. Phys. Rev. Lett. 90(16), 160402 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Whitney, R.S., Gefen, Y.: Berry phase in a nonisolated system. Phys. Rev. Lett. 90(19), 190402 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Tong, D., Sjöqvist, E., Kwek, L.C., Oh, C.H.: Kinematic approach to the mixed state geometric phase in nonunitary evolution. Phys. Rev. Lett. 93(8), 080405 (2004)

    Article  ADS  Google Scholar 

  11. Morpurgo, A., Heida, J., Klapwijk, T., Van Wees, B., Borghs, G.: Ensemble-average spectrum of aharonov-bohm conductance oscillations: evidence for spin-orbit-induced berry’s phase. Phys. Rev. Lett. 80(5), 1050 (1998)

    Article  ADS  Google Scholar 

  12. Niu, Q., Wang, X., Kleinman, L., Liu, W.-M., Nicholson, D., Stocks, G.: Adiabatic dynamics of local spin moments in itinerant magnets. Phys. Rev. Lett. 83(1), 207 (1999)

    Article  ADS  Google Scholar 

  13. Zanardi, P., Rasetti, M.: Holonomic quantum computation. Phys. Lett. A 264(2-3), 94–99 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Jones, J.A., Vedral, V., Ekert, A., Castagnoli, G.: Geometric quantum computation using nuclear magnetic resonance. Nature 403 (6772), 869–871 (2000)

    Article  ADS  Google Scholar 

  15. Zhu, S.-L., Wang, Z.: Implementation of universal quantum gates based on nonadiabatic geometric phases. Phys. Rev. Lett. 89(9), 097902 (2002)

    Article  ADS  Google Scholar 

  16. Vedral, V.: Geometric phases and topological quantum computation. International Journal of Quantum Information 1(01), 1–23 (2003)

    Article  MATH  Google Scholar 

  17. Rowell, E., Wang, Z.: Mathematics of topological quantum computing. Bull. Am. Math. Soc. 55(2), 183–238 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  18. Tiwari, S.: Geometric phase in optics: Quantal or classical?. J. Mod. Opt. 39(5), 1097–1105 (1992)

    Article  ADS  Google Scholar 

  19. Galvez, E.J.: Applications of geometric phase in optics. Recent Research Developments in Optics 2, 165–182 (2002)

    Google Scholar 

  20. Carollo, A.C., Pachos, J.K.: Geometric phases and criticality in spin-chain systems. Phys. Rev. Lett. 95(15), 157203 (2005)

    Article  ADS  Google Scholar 

  21. Zhu, S.-L.: Scaling of geometric phases close to the quantum phase transition in the x y spin chain. Phys. Rev. Lett. 96(7), 077206 (2006)

    Article  ADS  Google Scholar 

  22. Najarbashi, G., Seifi, B.: Quantum phase transition in the dzyaloshinskii-moriya interaction with inhomogeneous magnetic field: Geometric approach. Quantum Inf. Process 16(2), 1–16 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  23. Ekert, A., Ericsson, M., Hayden, P., Inamori, H., Jones, J.A., Oi, D.K., Vedral, V.: Geometric quantum computation. J. Mod. Opt. 47(14-15), 2501–2513 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Sjöqvist, E.: Geometric phases in quantum information. Int. J. Quantum Chem. 115(19), 1311–1326 (2015)

    Article  Google Scholar 

  25. Tong, D., Kwek, L., Oh, C.: Geometric phase for entangled states of two spin-1/2 particles in rotating magnetic field. Journal of Physics A: Mathematical and General 36(4), 1149 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Tong, D., Sjöqvist, E., Kwek, L., Oh, C., Ericsson, M.: Relation between geometric phases of entangled bipartite systems and their subsystems. Phys. Rev. A 68(2), 022106 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  27. Bertlmann, R.A., Durstberger, K., Hasegawa, Y., Hiesmayr, B.C.: Berry phase in entangled systems: A proposed experiment with single neutrons. Phys. Rev. A 69(3), 032112 (2004)

    Article  ADS  MathSciNet  Google Scholar 

  28. Schrödinger, E.: Der stetige übergang von der mikro-zur makromechanik. Naturwissenschaften 14(28), 664–666 (1926)

    Article  ADS  MATH  Google Scholar 

  29. Schwinger, J.: The theory of quantized fields. ii. Phys. Rev. 91(3), 713 (1953)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Glauber, R.J.: Photon correlations. Phys. Rev. Lett. 10(3), 84 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  31. Sanders, B.C.: Entangled coherent states. Phys. Rev. A 45(9), 6811 (1992)

    Article  ADS  Google Scholar 

  32. Yu-Bo, S., Jiong, L., Sheng-Yang, Z., Lei, W., Lan, Z.: Entanglement concentration for w-type entangled coherent states. Chinese Phys. B 23 (8), 080305 (2014)

    Article  Google Scholar 

  33. Van Enk, S.: Entanglement capabilities in infnite dimensions: Multidimensional entangled coherent states. Phys. Rev. Lett. 91(1), 017902 (2003)

    Article  ADS  Google Scholar 

  34. Sanders, B.C.: Review of entangled coherent states. Journal of Physics a: Mathematical and theoretical 45(24), 244002 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Najarbashi, G., Mirzaei, S.: Noise effects on entangled coherent state generated via atom-field interaction and beam splitter. Int. J. Theor. Phys. 55(5), 2311–2323 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  36. Mirzaei, S., Najarbashi, G.: One-mode wigner quasi-probability distribution function for entangled coherent states generated by beam splitter and cavity qed. Reports on Mathematical Physics 83(1), 1–20 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  37. Najarbashi, G., Maleki, Y.: Maximal entanglement of two-qubit states constructed by linearly independent coherent states. Int. J. Theor. Phys. 50(8), 2601–2608 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  38. Najarbashi, G., Mirzaei, S.: Entanglement of multi-qudit states constructed by linearly independent coherent states: Balanced case. Int. J. Theor. Phys. 55(3), 1336–1353 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  39. Najarbashi, G., Maleki, Y., et al.: Entanglement of grassmannian coherent states for multi-partite n-level systems. SIGMA, Symmetry, Integrability and Geometry: Methods and Applications 7, 011 (2011)

    MathSciNet  MATH  Google Scholar 

  40. Dehghani, A., Mojaveri, B., Aryaie, M., Alenabi, A.: Superposition of two-mode near coherent states: non-classicality and entanglement. Quantum Inf. Process 18(5), 1–16 (2019)

    Article  MathSciNet  Google Scholar 

  41. Dehghani, A., Mojaveri, B., Bahrbeig, R.J.: Two-qutrit entangled f-coherent states. Reports on Mathematical Physics 87(1), 111–127 (2021)

    Article  MathSciNet  MATH  Google Scholar 

  42. Mojaveri, B., Dehghani, A., Jafarzadeh Bahrbeig, R.: Enhancing entanglement of entangled coherent states via a f-deformed photon-addition operation. The European Physical Journal Plus 134(9), 1–8 (2019)

    Article  MATH  Google Scholar 

  43. Chaturvedi, S., Sriram, M., Srinivasan, V.: Berry’s phase for coherent states. Journal of Physics A: Mathematical and General 20(16), L1071 (1987)

    Article  ADS  MathSciNet  Google Scholar 

  44. Pati, A.K.: Geometric aspects of noncyclic quantum evolutions. Phys. Rev. A 52(4), 2576 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  45. Yang, D.-B., Chen, Y., Zhang, F.-L., Chen, J.-L.: Geometric phases for nonlinear coherent and squeezed states. Journal of Physics b: Atomic, Molecular and Optical Physics 44(7), 075502 (2011)

    Article  ADS  Google Scholar 

  46. Wu, X., Jia, S.-P., Cai, C., Kuang, L.-M.: Witnessing entanglement via the geometric phase in a impurity-doped bose-einstein condensate. arXiv:2106.00224 (2021)

  47. Solomon, A.I.: Entanglement dissipation: Unitary and non-unitary processes. In: Journal of Physics: Conference Series, vol. 380, p 012012. IOP Publishing (2012)

  48. Akhtarshenas, S.J.: Concurrence vectors in arbitrary multipartite quantum systems. Journal of Physics A: Mathematical and General 38(30), 6777 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  49. Chen, X., Gu, Z.-C., Wen, X.-G.: Local unitary transformation, long-range quantum entanglement, wave function renormalization, and topological order. Phys. Rev. B 82(15), 155138 (2010)

    Article  ADS  Google Scholar 

  50. Sun, B.-Z., Fei, S.-M., Wang, Z.-X.: On local unitary equivalence of two and threequbit states. Scientific Reports 7(1), 1–6 (2017)

    ADS  Google Scholar 

  51. Zhang, J., Vala, J., Sastry, S., Whaley, K.B.: Exact two-qubit universal quantum circuit. Phys. Rev. Lett. 91(2), 027903 (2003)

    Article  ADS  Google Scholar 

  52. Schmidt, E.: Zur theorie der linearen und nichtlinearen integralgleichungen. In: Integralgleichungen und Gleichungen mit unendlich vielen Unbekannten, pp 190–233. Springer (1989)

  53. Ziman, M., S̆telmachović, P., Buz̆ek, V.: On the local unitary equivalence of states of multi-partite systems. Fortschritte der Physik: Progress of Physics 49(10-11), 1123–1131 (2001)

    Article  MathSciNet  Google Scholar 

  54. Yurke, B., McCall, S.L., Klauder, J.R.: Su (2) and su (1, 1) interferometers. Phys. Rev. A 33(6), 4033 (1986)

    Article  ADS  Google Scholar 

  55. Demkowicz-Dobrzański, R., Jarzyna, M., Kołodyński, J.: Quantum limits in optical interferometry. Progress in Optics 60, 345–435 (2015)

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Najarbashi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almas, S.M., Najarbashi, G. & Tavana, A. Geometric Phase for Two-Mode Entangled Coherent States. Int J Theor Phys 61, 192 (2022). https://doi.org/10.1007/s10773-022-05179-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-05179-7

Keywords

Navigation