Skip to main content
Log in

Superposition and interference states in q-deformed quantum oscillator

  • Regular Article
  • Published:
The European Physical Journal D Aims and scope Submit manuscript

Abstract

Wave functions and probability density functions of superposition states of a q-deformed harmonic oscillator are studied. It is found that the intensity of the q deformation parameter and the ratio of probability amplitudes in the superposition state determine the oscillation characteristic of the probability density function. In the Fourier spectrum of the probability density function, high-frequency components disappear as the system evolves to an undeformed state. It is shown that by superposing four-wave functions with the same deformation value \(q=0.001\), an entangled state having sub-Planck features can be obtained, whereas two deformed states with the same q value do not constitute an entangled state.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Data Availability

This manuscript has no associated data or the data will not be deposited. [Authors’ comment: Data sets generated during the current study are available from the corresponding author on reasonable request.]

References

  1. W.H. Zurek, Sub-Planck structure in phase space and its relevance for quantum decoherence. Nature 412(6848), 712–717 (2001). https://doi.org/10.1038/35089017

    Article  ADS  Google Scholar 

  2. I. Katz, A. Retzker, R. Straub, R. Lifshitz, Signatures for a classical to quantum transition of a driven nonlinear nanomechanical resonator. Phys. Rev. Lett. 99(4), 1–4 (2007). https://doi.org/10.1103/PhysRevLett.99.040404

    Article  Google Scholar 

  3. B. Teklu, A. Ferraro, M. Paternostro, M.G.A. Paris, Nonlinearity and nonclassicality in a nanomechanical resonator. EPJ Quantum Technol. (2015). https://doi.org/10.1140/epjqt/s40507-015-0029-x

    Article  Google Scholar 

  4. M.G.A. Paris, M.G. Genoni, N. Shammah, B. Teklu, Quantifying the nonlinearity of a quantum oscillator. Phys. Rev. A - At. Mol. Opt. Phys. 90(1), 1–8 (2014). https://doi.org/10.1103/PhysRevA.90.012104

    Article  Google Scholar 

  5. S. Olivares, Quantum optics in the phase space: A tutorial on Gaussian states. Eur. Phys. J. Spec. Top. 203(1), 3–24 (2012). https://doi.org/10.1140/epjst/e2012-01532-4

    Article  Google Scholar 

  6. E.I. Jafarov, J. Van Der Jeugt, Transition to sub-Planck structures through the superposition of q-oscillator stationary states. Phys. Lett. Sect. A: Gen. At. Solid State Phys. 374(34), 3400–3404 (2010). https://doi.org/10.1016/j.physleta.2010.06.046

    Article  MathSciNet  Google Scholar 

  7. M. Arik, D.D. Coon, Hilbert spaces of analytic functions and generalized coherent states. J. Math. Phys. 17(4), 524–527 (1976). https://doi.org/10.1063/1.522937

    Article  ADS  MathSciNet  Google Scholar 

  8. A.J. Macfarlane, On q-analogues of the quantum harmonic oscillator and the quantum group SU(2) q. J. Phys. A: Math. Gen. 22(21), 4581–4588 (1989). https://doi.org/10.1088/0305-4470/22/21/020

    Article  ADS  MathSciNet  Google Scholar 

  9. S.A. Alavi, S. Rouhani, Exact analytical expression for magnetoresistance using quantum groups. Phys. Lett. A 320(4), 327–332 (2004). https://doi.org/10.1016/j.physleta.2003.11.028

    Article  ADS  MathSciNet  Google Scholar 

  10. L.M.C.S. Monteiro, M.R. Rodrigues, S. Wulck, Quantum algebraic nature of the phonon spectrum in \({}^{4}\)he. Phys. Rev. Lett. 76, 1098–1101 (1996). https://doi.org/10.1103/PhysRevLett.76.1098

    Article  ADS  Google Scholar 

  11. D. Bonatsos, C. Daskaloyannis, P. Kolokotronis, Coupled q-oscillators as a model for vibrations of polyatomic molecules. J. Chem. Phys. 106(2), 605–609 (1997). https://doi.org/10.1063/1.473189

    Article  ADS  Google Scholar 

  12. D. Bonatsos, C. Daskaloyannis, Quantum groups and their applications in nuclear physics. Prog. Part. Nucl. Phys. 43(2), 537–618 (1999). https://doi.org/10.1016/S0146-6410(99)00100-3

    Article  ADS  Google Scholar 

  13. V.V. Eremin, A.A. Meldianov, The q-deformed harmonic oscillator, coherent states, and the uncertainty relation. Theor. Math. Phys. 147(2), 709–715 (2006). https://doi.org/10.1007/s11232-006-0072-y

    Article  MathSciNet  Google Scholar 

  14. F. Nutku, K.D. Sen, E. Aydiner, Complexity study of q-deformed quantum harmonic oscillator. Physica A 533, 122041 (2019). https://doi.org/10.1016/j.physa.2019.122041

    Article  MathSciNet  Google Scholar 

  15. I. Białynicki-Birula, J. Mycielski, Uncertainty relations for information entropy in wave mechanics. Commun. Math. Phys. 44(2), 129–132 (1975). https://doi.org/10.1007/BF01608825

    Article  ADS  MathSciNet  Google Scholar 

  16. M. Schreiber, S.S. Hodgman, P. Bordia, H.P. Lüschen, M.H. Fischer, R. Vosk, E. Altman, U. Schneider, I. Bloch, Observation of many-body localization of interacting fermions in a quasirandom optical lattice. Science 349(6250), 842–845 (2015). https://doi.org/10.1126/science.aaa7432

  17. G.A. SergeAubry, Analyticity breaking and Anderson localization in incommensurate lattices. Ann. Israel Phys. Soc 3(133), 18 (1980)

    MathSciNet  Google Scholar 

  18. E. Wigner, On the Quantum Correction For Thermodynamic Equilibrium. Phys. Rev. 40(5), 749–759 (1932). https://doi.org/10.1103/PhysRev.40.749

    Article  ADS  Google Scholar 

  19. J. Weinbub, D.K. Ferry, Recent advances in Wigner function approaches. Appl. Phys. Rev. 5(4), 041104 (2018). https://doi.org/10.1063/1.5046663

  20. X.L. Zhao, Z.C. Shi, M. Qin, X.X. Yi, Optical Schrödinger cat states in one mode and two coupled modes subject to environments. Phys. Rev. A 96(1), 1–10 (2017). https://doi.org/10.1103/PhysRevA.96.013824

  21. J.R. Bhatt, P.K. Panigrahi, M. Vyas, Entanglement-induced sub-Planck phase-space structures. Phys. Rev. A - At. Mol. Opt. Phys. 78(3), 9–12 (2008). https://doi.org/10.1103/PhysRevA.78.034101

    Article  MathSciNet  Google Scholar 

  22. E.I. Jafarov, S. Lievens, S.M. Nagiyev, J. Van Der Jeugt, The Wigner function of a q-deformed harmonic oscillator model. J. Phys. A: Math. Theor. 40(20), 5427–5441 (2007). https://doi.org/10.1088/1751-8113/40/20/012

    Article  ADS  MathSciNet  Google Scholar 

  23. A. Sumairi, S.N. Hazmin, C.H.R. Ooi, Quantum entanglement criteria. J. Mod. Opt. 60(7), 589–597 (2013). https://doi.org/10.1080/09500340.2013.796016

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Sir Michael V. Berry (Emeritus, Melville Wills Professor of Physics, University of Bristol) for fruitful discussions.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to the paper.

Corresponding author

Correspondence to Ferhat Nutku.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Supplementary Information

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alomeare, H., Nutku, F. & Aydiner, E. Superposition and interference states in q-deformed quantum oscillator. Eur. Phys. J. D 78, 53 (2024). https://doi.org/10.1140/epjd/s10053-024-00855-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjd/s10053-024-00855-1

Navigation