Skip to main content
Log in

Quantum Entanglement Partly Demystified

  • Research
  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We consider a simple string model to explain and partly demystify the phenomenon of quantum entanglement. The model in question has nothing to do with string theory: it uses macroscopic strings that can be acted upon by Alice and Bob in ways that violate, or fail to violate, in different ways Bell-CHSH inequalities and the no-signaling conditions, also called marginal laws. We present several variants of the model, to address different objections that may arise. This allows us to make fully visible what the quantum formalism already suggests, about the nature of the correlations associated with entangled states, which appear to be created in a contextual manner at each execution of a joint measurement. We also briefly present the hidden measurement interpretation, whose rationale is compatible with the mechanism suggested by our string model, then offer some final thoughts about the possibility that the quantum entanglement phenomenon might affect not only states, but also measurements, and that our physical reality would be predominantly non-spatial in nature.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Notes

  1. This is roughly the reaction that Bell had, when in the seventies of the last century one of us presented for the first time, at a conference at the CERN, the equivalent ‘vessels of water model’.

  2. To the authors’ knowledge, a macroscopic model with such properties had never been proposed up to now.

  3. Interestingly, Anton Zeilinger, who was recently awarded the Nobel Prize for his experimental work on entanglement, co-authored Rauch’s main experiment [49], as he was one of his students at the time.

References

  1. Adenier, G., Khrennikov, A.: Is the fair sampling assumption supported by EPR experiments?. J. Phys. B: Atomic, Molecular and Optical Physics 40, 131–141 (2007)

  2. Adenier, G., Khrennikov, A.: Test of the no-signaling principle in the Hensen loophole-free CHSH experiment. Fortschritte der Physik (Progress in Physics). 65, 1600096 (2017)

  3. Aerts, D.: Example of a macroscopical situation that violates Bell inequalities. Lettere al Nuovo Cimento. 34, 107–111 (1982)

    Article  Google Scholar 

  4. Aerts, D.: The missing elements of reality in the description of quantum mechanics of the EPR paradox situation. Helv. Phys. Acta. 57, 421–428 (1984)

    MathSciNet  Google Scholar 

  5. Aerts, D.: A possible explanation for the probabilities of quantum mechanics. J. Math. Phys. 27, 202–210 (1986)

    Article  MathSciNet  ADS  Google Scholar 

  6. Aerts, D.: An attempt to imagine parts of the reality of the micro-world. In: Mizerski, J., et al. (eds.) Problems in quantum physics II; Gdansk ’89. World scientific publishing company, Singapore (1990)

    Google Scholar 

  7. Aerts, D.: A mechanistic classical laboratory situation violating the Bell inequalities with \(2\sqrt{2}\), exactly ‘in the same way’ as its violations by the EPR experiments. Helv. Phys. Acta. 64, 1–23 (1991)

    MathSciNet  Google Scholar 

  8. Aerts, D.: Relativity theory: what is reality? Found. Phys. 26, 1627–1644 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  9. Aerts, D.: The entity and modern physics: the creation discovery view of reality. In: Castellani, E. (ed.) Interpreting bodies: Classical and quantum objects in modern physics, pp. 223–257. Princeton University Press, Princeton (1998)

    Google Scholar 

  10. Aerts, S.: A realistic device that simulates the non-local PR box without communication (2005). arXiv:quant-ph/0504171

  11. Aerts, D., Aerts, S., Coecke, B., D’Hooghe, B., Durt, T., Valckenborgh, F: A model with varying fluctuations in the measurement context. In: M. Fererro and A. van der Merwe (eds.), New developments on fundamental problems in quantum physics (pp. 7–9). Dordrecht: Springer (1997)

  12. Aerts, D., Coecke, B., Durt, T., Valckenborgh, F.: Quantum, classical and intermediate I & II. Tatra Mountains Mathematical Publications 10, pp. 225–240, pp. 241–266 (1997)

  13. Aerts, D., Durt, T., Van Bogaert.: Quantum probability, the classical limit and non locality. In: Laurikainen, K.V., Motonen, C. (eds.) Proceedings of the international sympodium on the foundations of modern physics, 1992: The copenhagen interpretation and wolfgang pauli (pp. 35–56). Singapore: World Scientific (1993)

  14. Aerts, D., Durt, T.: Quantum, classical and intermediate: An illustrative example. Found. Phys. 24, 1353–1369 (1994)

    Article  MathSciNet  ADS  Google Scholar 

  15. Aerts, D., Sassoli de Bianchi M.: The extended bloch representation of quantum mechanics and the hidden-measurement solution to the measurement problem. Annals Phys. 351, 975–1025 (2014)

  16. Aerts, D., Sassoli de Bianchi M.: Many-measurements or many-worlds? a dialogue. Found. Sci. 20, 399–427 (2015)

  17. Aerts, D., Sassoli de Bianchi, M.: The extended bloch representation of quantum mechanics explaining superposition, interference and entanglement. J. Math. Phys. 57, 122110 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  18. Aerts, D., Sassoli de Bianchi M.: When Bertlmann wears no socks: contextual common causes as an explanation for quantum correlations. To be published in a forthcoming World Scientific ‘Probing the Meaning of Quantum Mechanics’ volume (2019). arXiv:1912.07596 [quant-ph]

  19. Aerts, D., Sassoli de Bianchi M.: Single-entity violation of Bell-CHSH inequality and no-signaling conditions. J Math. Phys. 62, 092103 (2021)

  20. Aerts, D., Sassoli de Bianchi, M.: The nature of time and motion in relativistic operational reality. In: preparation. To be submitted to: Theoria. An international journal for theory, history and foundations of science (2023)

  21. Aerts, D., Aerts Arguëlles, J., Beltran, L., Geriente, S., Sassoli de Bianchi, M., Sozzo, S., Veloz, T.: Quantum entanglement in physical and cognitive systems: a conceptual analysis and a general representation. Eur. Phys. J. Plus 134, 493 (2019)

  22. Aerts, D., Sassoli de Bianchi, M., Sozzo, S., Veloz, T.: On the conceptuality interpretation of quantum and relativity theories. Found. Sci. 25, 5–54 (2020)

  23. Aspect, A., Grangier, P., Roger, G.: Experimental realization of Einstein-Podolsky-Rosen-Bohm Gedankenexperiment: A new violation of Bell’s Inequalities. Phys. Rev. Lett. 49, 91–94 (1982)

    Article  ADS  Google Scholar 

  24. Aspect, A., Dalibard, J., Roger, G.: Experimental test of Bell’s Inequalities using time-varying analyzers. Phys. Rev. Lett 49, 1804–1807 (1982)

    Article  MathSciNet  ADS  Google Scholar 

  25. Arvind, K.S., Mallesh, N.: Mukunda: A generalized Pancharatnam geometric phase formula for three-level quantum systems. J. Phys. A 30, 2417 (1997)

    Article  MathSciNet  ADS  Google Scholar 

  26. Aspect, A.: Trois tests expérimentaux des inégalités de Bell par mesure de corrélation de polarization de photons. Thèse d’Etat, Orsay (1983)

    Google Scholar 

  27. Bell, J.: On the Einstein Podolsky Rosen paradox. Phys. 1, 195–200 (1964)

    Article  MathSciNet  Google Scholar 

  28. Bengtsson, I., Życzkowski, K.: Geometry of quantum states: An introduction to quantum entanglement. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  29. Bengtsson, I., Weis, S., Życzkowski, K.: Geometry of the set of mixed quantum states: An apophatic approach, pp. 175–197. In: Geometric methods in physics, XXX Workshop 2011, Trends in mathematics, Springer (2013)

  30. Bednorz, A.: Analysis of assumptions of recent tests of local realism. Phys. Rev. A 95, 042118 (2017)

    Article  ADS  Google Scholar 

  31. Bohm, D.: Quantum Theory. Prentice-Hall, Inc., Englewood Cliffs (1951)

    Google Scholar 

  32. Brans, C.H: Bell’s theorem does not eliminate fully causal hidden variables. Int. J. Theo.r Phys. 27, 219–226 (1988)

  33. Byrd, M.S., Khaneja, N.: Characterization of the positivity of the density matrix in terms of the coherence vector representation. Phys. Rev. A 68, 062322 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  34. Christensen, B.G., McCusker, K.T., Altepeter, J., Calkins, B., Gerrits, T., Lita, A., Miller, A., Shalm, L.K., Zhang, Y., Nam, S.W., Brunner, N., Lim, C.C.W., Gisin, N., Kwiat, P.G.: Detection-loophole-free test of quantum nonlocality, and applications. Phys. Rev. Lett. 111, 1304–1306 (2013)

    Article  Google Scholar 

  35. Cirel’son, B.S.: Quantum generalizations of Bell’s inequality. Lett. Math. Phys. 4, 93–100 (1980)

    Article  MathSciNet  ADS  Google Scholar 

  36. Clauser, J.F., Horne, M.A., Shimony, A., Holt, R.A.: Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1969)

    Article  ADS  Google Scholar 

  37. De Raedt, H., Michielsen, K., Jin, F.: Einstein-Podolsky-Rosen-Bohm laboratory experiments: Data analysis and simulation. AIP Conf. Proc. 1424, 55–66 (2012)

    Article  ADS  Google Scholar 

  38. De Raedt H., Jin, F., Michielsen, K.: Data analysis of Einstein-Podolsky-Rosen-Bohm laboratory experiments. Proc. of SPIE 8832, The nature of light: What are photons? V, 88321N (2013)

  39. DeWit, B., Graham, N. (eds.): The many-worlds interpretation of quantum mechanics. Princeton University Press, Princeton (1973)

    Google Scholar 

  40. Everett, H.: Relative State Formulation of Quantum Mechanics. Rev. Modern Phys. 29, 454–462 (1957)

    Article  MathSciNet  ADS  Google Scholar 

  41. Gerlich, S., Eibenberger, S., Tomandl, M., Nimmrichter, S., Hornberger, K., Fagan, P.J., Tuüxen, J., Mayor, M., Arndt, M.: Quantum interference of large organic molecules. Nature Commun. 2, 263 (2011)

    Article  ADS  Google Scholar 

  42. Giustina, M., Mech, A., Ramelow, S., Wittmann, B., Kofler, J., Beyer, J., Lita, A., Calkins, B., Gerrits, T., Woo Nam, S., Ursin, R., Zeilinger, A.: Bell violation using entangled photons without the fair-sampling assumption. Nature 497, 227–230 (2013)

    Article  ADS  Google Scholar 

  43. Hensen, B., Bernien, H., Dréau, A.E., Reiserer, A., Kalb, N., Blok, M. S., Ruitenberg, J., Vermeulen, R.F.L., Schouten, R.N., Abellán, C., Amaya, W., Pruneri, V., Mitchell, M.W., Markham, M., Twitchen, D.J., Elkouss, D., Wehner, S., Taminiau T.H., Hanson R.: Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature, 526, 682–686 (2016)

  44. Hossenfelder, S., Palmer, T.: Rethinking Superdeterminism. Frontiers in Physics 8 (2020). https://doi.org/10.3389/fphy.2020.00139

  45. Kimura, G.: The Bloch Vector for \(N\)-Level Systems. Phys. Lett. A 314, 339 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  46. Kimura, G., Kossakowski, A.: The Bloch-vector space for N-level systems - the spherical-coordinate point of view. Open Sys. Information Dyn. 12, 207 (2005)

    Article  MathSciNet  Google Scholar 

  47. Kupczynski, M.: Is Einsteinian no-signalling violated in Bell tests? Open Phys. 15, 739–753 (2017)

    Article  Google Scholar 

  48. Rauch, H., Treimer, W., Bonse, U.: Test of a single crystal neutron interferometer. Phys. Lett. A 47, 369–371 (1974)

    Article  ADS  Google Scholar 

  49. Rauch, H., Zeilinger, A., Badurek, G., Wilfing, A., Bauspiess, W., Bonse, U.: Phys. Lett. 54A, 425 (1975)

    Article  ADS  Google Scholar 

  50. Sassoli de Bianchi, M.: Using simple elastic bands to explain quantum mechanics: a conceptual review of two of Aerts’ machine-models. Central Eur. J Phys. 11, 147–161 (2013)

  51. Sassoli de Bianchi, M.: Theoretical and conceptual analysis of the celebrated 4\({\pi }\)-symmetry neutron interferometry experiments. Found. Sci. 22, 627–753 (2017)

  52. de Bianchi, Sassoli: M.: A non spatial reality. Found. Sci. 26, 143–170 (2021)

    Google Scholar 

  53. Schrödinger, E.: Discussion of probability relations between separated systems. Math. Proc. Camb. Soc. 31, 555–563 (1935). https://doi.org/10.1017/S0305004100013554

    Article  ADS  Google Scholar 

  54. Scheidl, T., Ursin, R., Kofler, J., Ranelow, S., Ma, X., Herbst, T., Ratschbacher, L., Fedrissi, A., Langford, N.K., Jennewein, T., Zeilinger, A.: Violation of local realism with freedom of choice. Proc. Natl. Acad. Sci. 107, 19708–19713 (2010)

    Article  ADS  Google Scholar 

  55. Tittel, W., Brendel, J., Zbinden, H., Gisin, N.: Violation of Bell’s inequalities by photons more than 10 km apart. Phys. Rev. Lett. 81, 3563–3566 (1998)

    Article  ADS  Google Scholar 

  56. Weihs, G., Jennewein, T., Simon, C., Weinfurter, H., Zeilinger, A.: Violation of Bell’s inequality under strict Einstein locality condition. Phys. Rev. Lett. 81, 5039–5043 (1998)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

These authors contributed equally to this work.

Corresponding author

Correspondence to Massimiliano Sassoli de Bianchi.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aerts, D., Sassoli de Bianchi, M. Quantum Entanglement Partly Demystified. Int J Theor Phys 63, 87 (2024). https://doi.org/10.1007/s10773-024-05617-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-024-05617-8

Keywords

Navigation