Skip to main content
Log in

Single-photon Transport in a Waveguide-cavity-emitter System

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We investigate the single-photon transport properties in a hybrid waveguide quantum electrodynamics system, in which a one-dimensional waveguide is simultaneously coupled to a cavity and a driven Λ-type three-level atom. The cavity and the atom are also coupled to each other. We show that when the waveguide is coupled to the cavity and the atom at the same point, double electromagnetically induced transparency (EIT) can be observed from the system. The physical mechanism of the double EIT effect has been given by setting up the eigenstate structure for the whole system. When the waveguide is coupled to the cavity and the atom at different points, we demonstrate that the controllable nonreciprocal scattering effect can be achieved by modulating the non-zero cavity-emitter separation and the phase associated with the cavity-emitter coupling strength. These results have potential applications in realization of photonic coherent control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data Availability

The original contributions presented in the study are included in the article/supplementary material, and further inquiries can be directed to the corresponding authors.

References

  1. Roy, D., Wilson, C.M., Firstenberg, O.: Colloquium: Strongly interacting photons in one-dimensional continuum. Rev. Mod. Phys. 89, 021001 (2017)

    Article  MathSciNet  Google Scholar 

  2. Shen, J. T., Fan, S.H.: Coherent photon transport from spontaneous emission in one-dimensional waveguides. Opt. Lett. 30, 2001 (2005)

    Article  ADS  Google Scholar 

  3. Zhou, L., Gong, Z.R., Liu, Y.X., Sun, C.P., Nori, F.: Controllable scattering of a single photon inside a one-dimensional resonator waveguide. Phys. Rev. Lett. 101, 100501 (2008)

    Article  ADS  Google Scholar 

  4. Jia, W.Z., Wang, Z.D.: Single-photon transport in a one-dimensional waveguide coupling to a hybrid atom-optomechanical system. Phys. Rev. A 88, 063821 (2013)

    Article  ADS  Google Scholar 

  5. Qiao, L.: Single-photon transport through a waveguide coupling to a quadratic optomechanical system. Phys. Rev. A 96, 013860 (2017)

    Article  ADS  Google Scholar 

  6. Neumeier, L., Leib, M., Hartmann, M.J.: Single-photon transistor in circuit quantum electrodynamics. Phys. Rev. lett. 111, 063601 (2013)

    Article  ADS  Google Scholar 

  7. Huang, J.F., Shi, T., Sun, C.P., Nori, F.: Controlling single-photon transport in waveguides with finite cross section. Phys. Rev. A 88, 013836 (2013)

    Article  ADS  Google Scholar 

  8. Qin, W., Nori, F.: Controllable single-photon transport between remote coupled-cavity arrays. Phys. Rev. A 93, 032337 (2016)

    Article  ADS  Google Scholar 

  9. Cheng, M.T., Xu, J.P., Agarwal, G.S.: Waveguide transport mediated by strong coupling with atoms. Phys. Rev. A 95, 053807 (2017)

    Article  ADS  Google Scholar 

  10. Konyk, W., Gea-Banacloche, J.: One-and two-photon scattering by two atoms in a waveguide. Phys. Rev. A 96, 063826 (2017)

    Article  ADS  Google Scholar 

  11. Debsuvra, M., Girish, S.A.: Transparency in a chain of disparate quantum emitters strongly coupled to a waveguide. Phys. Rev. A 101, 063814 (2020)

    Article  Google Scholar 

  12. Liao, Z.Y., Nha, H., Zubairy, M.S.: Dynamical theory of single-photon transport in a one-dimensional waveguide coupled to identical and nonidentical emitters. Phys. Rev. A 94, 053842 (2016)

    Article  ADS  Google Scholar 

  13. Liao, Z.Y., Zeng, X.D., Nha, H., Zubairy, M.S.: Photon transport in a one-dimensional nanophotonic waveguide QED system. Phys. Scr. 91, 063004 (2016)

    Article  ADS  Google Scholar 

  14. Akimov, A.V., Mukherjee, A., Yu, C.L., Chang, D.E., Zibrov, A.S., Hemmer, P.R., Park, H., Lukin, M.D.: Generation of single optical plasmons in metallic nanowires coupled to quantum dots. Nature (London) 450, 402 (2007)

    Article  ADS  Google Scholar 

  15. Dayan, B., Parkins, A.S., Aoki, T., Ostby, E.P., Vahala, K.J., Kimble, H.J.: A photon turnstile dynamically regulated by one atom. Science 319, 5866 (2008)

    Article  Google Scholar 

  16. Wei, H., Ratchford, D., Li, X., Xu, H., Shih, C.K.: Propagating surface plasmon induced photon emission from quantum dots. Nano Lett. 9, 4168 (2009)

    Article  ADS  Google Scholar 

  17. Huck, A., Kumar, S., Shakoor, A., Andersen, U.L.: Controlled coupling of a single nitrogen-vacancy center to a silver nanowire. Phys. Rev. Lett. 106, 096801 (2011)

    Article  ADS  Google Scholar 

  18. Babinec, T.M., Hausmann, B.J.M., Khan, M., Zhang, Y., Maze, J.R., Hemmer, P.R., Loncar, M.A.: Diamond nanowire single-photon source. Nat. Nanotechnol. 5, 195 (2010)

    Article  ADS  Google Scholar 

  19. Claudon, J., Bleuse, J., Malik, N.S., Bazin, M., Jaffrennou, P., Gregersen, N., Sauvan, C., Lalanne, P., Gérard, J.M.: A highly efficient single-photon source based on a quantum dot in a photonic nanowire. Nat. Photon. 4, 174 (2010)

    Article  ADS  Google Scholar 

  20. Hoi, I.C., Wilson, C.M., Johansson, G., Palomaki, T., Peropadre, B., Delsing, P.: Demonstration of a single-photon router in the microwave regime. Phys. Rev. Lett. 107, 073601 (2011)

    Article  ADS  Google Scholar 

  21. Javadi, A., Söllner, I., Arcari, M., Lindskov Hansen, S., Midolo, L., Mahmoodian, S., Kiršanské, G., Pregnolato, T., Lee, E.H., Song, J.D., Stobbe, S., Lodahl, P.: Single-photon non-linear optics with a quantum dot in a waveguide. Nat. Commun. 6, 8655 (2015)

    Article  ADS  Google Scholar 

  22. Wilson, C. M., Johansson, G., Pourkabirian, A., Simoen, M., Johansson, J. R., Duty, T., Nori, F., Delsing, P.: Observation of the dynamical Casimir effect in a superconducting circuit. Nature 479, 376 (2011)

    Article  ADS  Google Scholar 

  23. Zheng, H., Gauthier, D.J., Baranger, H.U.: Many-body bound-state effects in coherent and Fock-state scattering from a two-level system. Phys. Rev. A 82, 063816 (2010)

    Article  ADS  Google Scholar 

  24. Shi, T., Wu, Y.H., González-Tudela, A., Cirac, J.I.: Bound states in boson impurity models. Phys. Rev. X 6, 021027 (2016)

    Google Scholar 

  25. Calajó, G., Ciccarello, F., Chang, D.E., Rabl, P.: Atom-field dressed states in slow-light waveguide QED. Phys. Rev. A 93, 033833 (2016)

    Article  ADS  Google Scholar 

  26. Sánchez-Burillo, E., Zueco, D., Martín-Moreno, L., García-Ripoll, J.J.: Dynamical signatures of bound states in waveguide QED. Phys. Rev. A 96, 023831 (2017)

    Article  ADS  Google Scholar 

  27. Fong, P.T., Law, C.K.: Bound state in the continuum by spatially separated ensembles of atoms in a coupled-cavity array. Phys. Rev. A 96, 023842 (2017)

    Article  ADS  Google Scholar 

  28. Calajó, G., Fang, Y.L.L., Baranger, H.U., Ciccarello, F.: Exciting a bound state in the continuum through multiphoton scattering plus delayed quantum feedback. Phys. Rev. Lett. 122, 073601 (2019)

    Article  ADS  Google Scholar 

  29. Zheng, H.X., Baranger, H.U.: Persistent quantum beats and long-distance entanglement from waveguide-mediated interactions. Phys. Rev. lett. 110, 113601 (2013)

    Article  ADS  Google Scholar 

  30. Gonzalez-Ballestero, C., González-Tudela, A., Garcia-Vidal, F.J., Moreno, E.: Chiral route to spontaneous entanglement generation. Phys. Rev. A 92, 155304 (2015)

    Google Scholar 

  31. Mok, W.K., You, J.B., Kwek, L.C., Aghamalyan, D.: Microresonators enhancing long-distance dynamical entanglement generation in chiral quantum networks. Phys. Rev. A 101, 053861 (2020)

    Article  ADS  Google Scholar 

  32. Yu, Y., Ma, F., Luo, X.Y., Jing, B., Sun, P.F., Fang, R.Z., Yang, C.W., Liu, H., Zheng, M.Y., Xie, X.P., Zhang, W.J., You, L.X., Wang, Z., Chen, T.Y., Zhang, Q., Bao, X.H., Pan, J.W.: Entanglement of two quan-17 tum memories via fibres over dozens of kilometres. Nature 578, 240 (2020)

    Article  ADS  Google Scholar 

  33. Leent, T., Bock, M., Garthoff, R., Redeker, K., Zhang, W., Bauer, T., Rosenfeld, W., Becher, C., Weinfurter, H.: Long-distance distribution of emitter-photon entanglement at telecom wavelength. Phys. Rev. Lett. 124, 010510 (2020)

    Article  Google Scholar 

  34. Souza, J.A., Villas, C.J.: Coherent control of quantum fluctuations using cavity electromagnetically induced transparency. Phys. Rev. Lett. 111, 113602 (2013)

    Article  ADS  Google Scholar 

  35. Cheng, M.T., Ma, X.S., Zhang, J.Y., Wang, B.: Single photon transport in two waveguides chirally coupled by a quantum emitter. Opt. Exp. 24, 19988 (2016)

    Article  Google Scholar 

  36. Cheng, M.T., Ma, X., Fan, J.W., Xu, J., Zhu, C.: Controllable single-photon nonreciprocal propagation between two waveguides chirally coupled to a quantum emitter. Opt. Lett. 42, 2914C7 (2017)

    Google Scholar 

  37. Xu, X.W., Chen, A.X., Li, Y., Liu, Y.: Single-photon nonreciprocal transport in one-dimensional coupled-resonator waveguides. Phys. Rev. A 95, 063808 (2017)

    Article  ADS  Google Scholar 

  38. Du, L., Wang, Z.H., Li, Y.: Controllable optical response and tunable sensing based on self interference in waveguide QED systems. Opt. Exp. 29(3), 3038–3054 (2021)

    Article  Google Scholar 

  39. Du, L., Cai, M.R., Wu, J.H., Wang, Z.H., Li, Y.: Single-photon nonreciprocal excitation transfer with non-Markovian retarded effects. Phy. Rev. A 103, 053701 (2021)

    Article  ADS  Google Scholar 

  40. Lodahl, P., Mahmoodian, S., Stobbe, S., Rauschenbeutel, A., Schneeweiss, P., Volz, J., Pichler, H., Zoller, P.: Chiral quantum optics. Nature (London) 541, 473 (2017)

    Article  ADS  Google Scholar 

  41. González-Ballestero, C., Moreno, E., Garcia-Vidal, F.J., Gonzalez-Tudela, A.: Nonreciprocal few-photon routing schemes based on chiral waveguide-Cemitter couplings. Phys. Rev. A 94, 063817 (2016)

    Article  ADS  Google Scholar 

  42. Yan, C.H., Li, Y., Yuan, H., Wei, L.F.: Targeted photonic routers with chiral photon-atom interactions. Phys. Rev. A 97, 023821 (2018)

    Article  ADS  Google Scholar 

  43. Yan, W.B., Ni, W.Y., Zhang, J., Zhang, F.Y., Fan, H.: Tunable single-photon diode by chiral quantum physics. Phys. Rev. A 98, 043852 (2018)

    Article  ADS  Google Scholar 

  44. Wang, X., Shui, T., Li, L., Li, X., Wu, Z., Yang, W.X.: Tunable single-photon diode and circulator via chiral waveguide-Cemitter couplings. Laser Phys. Lett. 17, 065201 (2020)

    Article  ADS  Google Scholar 

  45. Stannigel, K., Rabl, P., Zoller, P.: Driven-dissipative preparation of entangled states in cascaded quantumoptical networks. New J. Phys. 14, 063014 (2012)

    Article  ADS  MATH  Google Scholar 

  46. Pichler, H., Ramos, T., Daley, A. J., Zoller, P.: Quantum optics of chiral spin networks. Phys. Rev. A 91, 042116 (2015)

    Article  ADS  Google Scholar 

  47. Wang, X., Li, H.R.: Chiral quantum network with giant atoms. Quantum Sci. Technol. 11, 035007 (2022)

    Article  ADS  Google Scholar 

  48. You, Y., Hu, Y., Lin, G., Qi, Y., Niu, Y., Gong, S.: Quantum nonreciprocity based on electromagnetically induced transparency in chiral quantum-optical systems. Phys. Rev. A 103, 063706 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  49. Yang, D.C., Cheng, M.T., Ma, X.S., Xu, J., Zhu, C., Huang, X.S.: Phase-modulated single-photon router. Phys. Rev. A 98, 063809 (2018)

    Article  ADS  Google Scholar 

  50. Wang, Z., Du, L., Li, Y., Liu, Y.X.: Phase-controlled single-photon nonreciprocal transmission in a one-dimensional waveguide. Phys. Rev. A 100, 053809 (2019)

    Article  ADS  Google Scholar 

  51. Wang, X, Yang, W.X., Chen, A.X., Li, L., Shui, T., Li, X., Wu, Z.: Phase-modulated single-photon nonreciprocal transport and directional router in a waveguideCcavity Cemitter system beyond the chiral coupling. Quantum Sci. Technol. 7, 015025 (2022)

    Article  ADS  Google Scholar 

  52. Shen, Y., Bradford, M., Shen, J.T.: Single-photon diode by exploiting the photon polarization in a waveguide. Phys. Rev. Lett. 107, 173902 (2011)

    Article  ADS  Google Scholar 

  53. Tsoi, T.S., Law, C.K.: Single-photon scattering on Λ-type three-level atoms in a one-dimensional waveguide. Phys. Rev. A 80, 033823 (2009)

    Article  ADS  Google Scholar 

  54. Witthaut, D., Sørensen, A.S.: Photon scattering by a three-level emitter in a one-dimensional waveguide. New. J. Phys. 12, 043052 (2010)

    Article  ADS  MATH  Google Scholar 

  55. Yu, X.Y., Li, J.H.: Coherent manipulation of single photon propagation in a one-dimensional waveguide with multiple -type periodically arrayed atoms. J. Opt. Soc. Am. B 33, 165 (2016)

    Article  ADS  Google Scholar 

  56. Du, L., Chen, Y.T., Li, Y.: Nonreciprocal frequency conversion with chiral-type atoms. Phys. Rev. Res. 3, 043226 (2021)

    Article  Google Scholar 

  57. Souza, J. A., Villas, C.J.: Coherent control of quantum fluctuations using cavity electromagnetically induced transparency. Phys. Rev. Lett. 111, 113602 (2013)

    Article  ADS  Google Scholar 

  58. Koch, J., Yu, T.M., Gambetta, J., Houck, A.A., Schuster, D.I., Majer, J., Blais, A., Devoret, M.H., Girvin, S.M., Schoelkopf, R.J.: Charge-insensitive qubit design derived from the Cooper pair box. Phys. Rev. A 76, 042319 (2007)

    Article  ADS  Google Scholar 

  59. Majer, J., Chow, J.M., Gambetta, J.M., Koch, J., Johnson, B.R., Schreier, J.A., Frunzio, L., Schuster, D.I., Houck, A.A., Wallraff, A., Blais, A., Devoret, M.H., Girvin, S.M., Schoelkopf, R.J.: Coupling superconducting qubits via a cavity bus. Nature (London) 449, 443 (2007)

    Article  ADS  Google Scholar 

  60. Peng, Z.H., Ding, J.H., Zhou, Y., Ying, L.L., Wang, Z., Zhou, L., Kuang, L.M., Liu, Y.X., Astafiev, O.V., Tsai, J.S.: Vacuum induced Autler-Townes splitting in a superconducting artificial atom. Phys. Rev. A 97, 063809 (2018)

    Article  ADS  Google Scholar 

  61. Johnson, B.R., Reed, M.D., Houck, A.A., Schuster, D.I., Bishop, L.S., Ginossar, E., Gambetta, J.M., DiCarlo, L., Frunzio, L., Girvin, S.M., Schoelkopf, R.J.: Quantum nondemolition detection of single microwave photons in a circuit. Nat. Phys. 6, 663 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Xue-Jian Sun developed the theory, performed the numerical simulations, and wrote the draft. All authors contributed to the theoretical discussions, simulated data analysis, and manuscript writing.

Corresponding author

Correspondence to HongRong Li.

Ethics declarations

Conflict of Interests

The authors declare no competing interests.

Consent for Publication

All authors agree to publish our article in Int. J. Theor. Phys.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, X., Liu, W., Chen, H. et al. Single-photon Transport in a Waveguide-cavity-emitter System. Int J Theor Phys 61, 216 (2022). https://doi.org/10.1007/s10773-022-05174-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-05174-y

Keywords

Navigation