Skip to main content
Log in

Single-Photon Transport in One-Dimensional Coupled-Resonator Waveguide with Second-Order Nonlinearity oupling to a Nanocavity Containing a Two-Level Atom and Kerr-Nonlinearity

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In the recent publication [Opt. Expr 28, 1249 (2020)] the single photon scattering is studied in a second-order nonlinear system. In this paper, we study controllable single photon scattering in a one-dimensional waveguide coupling with an additional cavity by second order nonlinear materials in a non-cascading configuration, where the additional cavity is embedded with a two-level atom and filled with Kerr-nonlinear materials. Considering the second order nonlinear coupling, we analyze the transmission properties of the three different coupling forms as follows: (i) The two-level atom is excited without the Kerr-nonlinearity. (ii)The Kerr-nonlinearity is excited without the two-level atom. (iii) Both of the two-level atom and Kerr-nonlinearity are excited. The transmission and reflection amplitudes are obtained by the discrete coordinates approach for the three cases. The results show that the transmission properties can be adjusted by the above three different coupling forms, which indicate our scheme can be used as a single photon switch to control the transmission and reflection of the single photon in the one-dimensional coupled resonant waveguide, and which is compared to the results with a two level system [Phys. Rev. A 85, 053840 (2012)] and find the advantages.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Astafiev, O., Zagoskin, A.M., Paskin, A. A., Abdumalikov, Y.A. Jr, Yamamoto, T., Inomata, K., Nakamura, Y., Tsai, J.S.: . Science 327, 840–843 (2010)

    ADS  Google Scholar 

  2. Lounis, B., Orrit, M.: . Rep. Prog. Phys. 68, 1129–1179 (2005)

    ADS  Google Scholar 

  3. Hijlkema, M., Weber, B., Specht, H.P., Webster, S.C., Kuhn, A., Rempe, G.: . Nature Physics. 3, 253–255 (2007)

    ADS  Google Scholar 

  4. Buckley, S., Rivoire, K., Vŭckov’c, J.: . Rep. Prog. Phys. 75, 126503 (2012)

    ADS  Google Scholar 

  5. Shen, J.-T., Fan, S.: . Phys. Rev. Lett. 95, 213001 (2005)

    ADS  Google Scholar 

  6. Chang, D.E., Sorensen, A.S., Demler, E.A., Lukin, M.D.: . Nat. Phys. 3, 807 (2007)

    Google Scholar 

  7. Shen, J.-T., Fan, S.: . Phys. Rev. Lett. 98, 153003 (2007)

    ADS  Google Scholar 

  8. Zhou, L., Gong, Z.R., Liu, Y.-X., Sun, C.P., Nori, F.: . Phys. Rev. Lett. 101, 100501 (2008)

    ADS  Google Scholar 

  9. Chang, D.E., Jiang, L., Gorshkov, A.V., Kimble, H.J.: . New J. Phys. 14, 063003 (2012)

    ADS  Google Scholar 

  10. Chang, Y., Gong, Z.R., Sun, C.P.: . Phys. Rev. A 83, 013825 (2011)

    ADS  Google Scholar 

  11. Zhou, L., Dong, H., Liu, Y.-X., Sun, C.P., Nori, F.: . Phys. Rev. A 78, 063827 (2008)

    ADS  Google Scholar 

  12. Tiecke, T.G., Thompson, J.D., de Leon, N.P., Liu, L.R., Vuletic, V., Lukin, M.D.: . Nature (London) 508, 241 (2014)

    ADS  Google Scholar 

  13. Zoubi, H., Ritsch, H.: . New J. Phys. 12, 103014 (2010)

    ADS  Google Scholar 

  14. Okaba, S., Takano, T., Benabid, F., Bradley, T., Vincetti, L., Maizelis, Z., Yampolskii, V., Nori, F., Katori, H.: . Nature Commun. 5, 4096 (2014)

    ADS  Google Scholar 

  15. Shen, J.T., Fan, S.: . Phys. Rev. Lett. 95, 213001 (2005)

    ADS  Google Scholar 

  16. Zhou, L., Gong, Z.R., Liu, Y.X., Sun, C.P., Nori, F.: . Phys. Rev. Lett. 101, 100501 (2008)

    ADS  Google Scholar 

  17. Shen, J.T., Fan, S.: . Phys. Rev. A 79, 023837 (2009)

    ADS  Google Scholar 

  18. Jia, W.Z., Wang, Z.D.: . Phys. Rev. A 88, 063821 (2013)

    ADS  Google Scholar 

  19. Neumeier, L., Leib, M., Hartmann, M.J.: . Phys. Rev. Lett. 111, 063601 (2013)

    ADS  Google Scholar 

  20. Qin, W., Nori, F.: . Phys. Rev. A 93, 032337 (2016)

    ADS  Google Scholar 

  21. Hoi, I.-C., Wilson, C.M., Johansson, G., Palomaki, T., Peropadre, B., Delsing, P.: . Phys. Rev. Lett. 107, 073601 (2011)

    ADS  Google Scholar 

  22. Dayan, B., Parkins, A.S., Aoki, T., Ostby, E.P., Vahala, K.J., Kimble, H.J.: . Science 319, 1062 (2008)

    ADS  Google Scholar 

  23. Akimov, A.V., Mukherjee, A., Yu, C.L., Chang, D.E., Zibrov, A.S., Hemmer, P.R., Park, H., Lukin, M.D.: . Nature (London) 450, 402 (2007)

    ADS  Google Scholar 

  24. Goban, A., Hung, C.L., Yu, S.P., Hood, J.D., Muniz, J.A., Lee, J.H., Martin, M.J., McClung, A.C., Choi, K.S., Chang, D.E., Painter, O., Kimble, H.J.: . Nat. Commun. 5, 3808 (2014)

    ADS  Google Scholar 

  25. Hung, C.L., Meenehan, S.M., Chang, D.E., Painter, O., Kimble, H.J.: . New J. Phys. 15, 083026 (2013)

    ADS  Google Scholar 

  26. Goban, A., Hung, C.-L., Hood, J.D., Yu, S.-P., Muniz, J.A., Painter, O., Kimble, H.J.: . Phys. Rev. Lett. 115, 063601 (2015)

    ADS  Google Scholar 

  27. Mitsch, R., Sayrin, C., Albrecht, B., Schneeweiss, P., Rauschenbeutel, A.: . Nat. Commun. 5, 5713 (2014)

    ADS  Google Scholar 

  28. Vetsch, E., Reitz, D., Sagué, G., Schmidt, R., Dawkins, S.T., Rauschenbeutel, A.: . Phys. Rev. Lett. 104, 203603 (2010)

    ADS  Google Scholar 

  29. Goban, A., Choi, K.S., Alton, D.J., Ding, D., Lacroǔte, C., Pototschnig, M.: . Phys. Rev. Lett. 109, 033603 (2012)

    ADS  Google Scholar 

  30. Yalla, R., Sadgrove, M., Nayak, K.P., Hakuta, K.: . Phys. Rev. Lett. 113, 143601 (2014)

    ADS  Google Scholar 

  31. Epple, G., Kleinbach, K.S., Euser, T.G., Joly, N.Y., Pfau, T., Russell, P.S.T.J., Löw, R.: . Nat. Commun. 5, 4132 (2014)

    ADS  Google Scholar 

  32. Langbecker, M., Noaman, M., Kjörgaard, N., Benabid, F., Windpassinger, P. arXiv:1706.07666

  33. Solano, P., Barberis-Blostein, P., Fatemi, F.K., Orozco, L.A., Rolston, S.L. arXiv:1704.07486

  34. Javanainen, J., Ruostekoski, J., Vestergaard, B., Francis, M.R.: . Phys. Rev. A 59, 649 (1999)

    ADS  Google Scholar 

  35. Le Kien, F., Hakuta, K.: . Phys. Rev. A 79, 013818 (2009)

    ADS  Google Scholar 

  36. Kien, F.L., Hakuta, K.: . Phys. Rev. A 77, 013801 (2008)

    ADS  Google Scholar 

  37. Liao, Z., Zeng, X., Zhu, S.-Y., Zubairy, M.S.: . Phys. Rev. A 92, 023806 (2015)

    ADS  Google Scholar 

  38. Ruostekoski, J., Javanainen, J.: . Phys. Rev. Lett. 117, 143602 (2016)

    ADS  Google Scholar 

  39. Manzoni, M.T., Chang, D.E., Douglas, J.S. arXiv:1702.05954

  40. Asenjo-Garcia, A., Hood, J.D., Chang, D.E., Kimble, H.J.: . Phys. Rev. A 95, 033818 (2017)

    ADS  Google Scholar 

  41. Guo, Y., Yan, L., Pan, W., Luo, B., Wen, K., Guo, Z., Luo, X.: . Opt. Express 20, 24348–24355 (2012)

    ADS  Google Scholar 

  42. Guo, Y., Yan, L., Pan, W., Luo, B., Wen, K., Guo, Z., Luo, X.: . Opt. Express 19, 13831–13838 (2011)

    ADS  Google Scholar 

  43. Faraon, A., Waks, E., Englund, D., Fushman, I., Vučković, J.: . Appl. Phys. Lett. 90, 073102 (2007)

    ADS  Google Scholar 

  44. Wallraff, A., Schuster, D.I., Blais, A., Frunzio, L., Huang, R.-S., Majer, J., Kumar, S., Girvin, S.M., Schoelkopf, R.J.: . Nature (London) 431, 162 (2004)

    ADS  Google Scholar 

  45. Hoi, I.C., Wilson, C.M., Johansson, G., Palomaki, T., Peropadre, B., Delsing, P.: . Phys. Rev. Lett. 107, 073601 (2011)

    ADS  Google Scholar 

  46. Zhou, L., Gao, Y.B., Song, Z., Sun, C.P.: . Phys. Rev. A 77, 013831 (2008)

    ADS  Google Scholar 

  47. Miroshnichenko, A.E., Mingaleev, S.F., Flach, S., Kivshar, Y.S.: . Phys. Rev. E 71, 036626 (2005)

    ADS  MathSciNet  Google Scholar 

  48. Cheng, M.T., Ma, X.S., Ding, M.T., Luo, Y.Q., Zhao, G.X.: . Phys. Rev. A 85, 053840 (2012)

    ADS  Google Scholar 

  49. Miroshnichenko, A.E.: . Phys. Rev. E 79, 026611 (2009)

    ADS  Google Scholar 

  50. Miroshnichenko, A.E., Flach, S., Kivshar, Y.S.: . Rev. Mod. Phys. 82, 2257 (2010)

    ADS  Google Scholar 

  51. Das, S., Elfving, V.E., Reiter, F., Sørensen, A. S.: . Phys. Rev. A 97, 043837 (2018)

    ADS  Google Scholar 

  52. Rodriguez, A., Soljacic, M., Joannopoulos, J.D., Johnson, S.G.: . Opt. Express 15, 7303–7318 (2007)

    ADS  Google Scholar 

  53. Bi, Z.-F., Rodriguez, A.W., Hashemi, H., Duchesne, D., Loncar, M., Wang, K.-M., Johnson, S.G.: . Opt. Express 20, 7526–7543 (2012)

    ADS  Google Scholar 

  54. Kuo, P.S., Bravo-Abad, J., Solomon, G.S.: . Nat. Commun. 5, 3109 (2014)

    ADS  Google Scholar 

  55. Irvine, W.T.M., Hennessy, K., Bouwmeester, D.: . Phys. Rev. Lett. 96, 057405 (2006)

    ADS  Google Scholar 

  56. Wang, C., Xiong, X., Andrade, N., Venkataraman, V., Ren, X.-F., Guo, G.-C., Lončar, M. a.: . Opt. Express 25, 6963–6973 (2017)

    ADS  Google Scholar 

  57. Sinclair, N., Oblak, D., Thiel, C.W., Cone, R.L., Tittel, W.: . Phys. Rev. Lett. 118, 100504 (2017)

    ADS  Google Scholar 

  58. Wang, K., Li, J., Gao, R., Qi, Z. in Advanced Photonics 2018 (BGPP, IPR, NP, NOMA, Sensors, Networks, SPPCom, SOF), OSA Techncail Digest (online) (Optical Society of America, 2018), paper JTu6D.1

  59. Majumdar, A., Gerace, D.: . Phys. Rev. B 87, 235319 (2013)

    ADS  Google Scholar 

  60. Zhou, Y.H., Shen, H.Z., Yi, X.X.: . Phys. Rev. A 92, 023838 (2015)

    ADS  Google Scholar 

  61. Zhou, Y.H., Shen, H.Z., Luo, X.Y., Wang, Y., Gao, F., Xin, C.Y.: . Phys. Rev. A 96, 063815 (2017)

    ADS  Google Scholar 

  62. Zhou, Y.H., Zhang, S.S., Shen, H.Z., Yi, X.X.: . Opt. Lett. 42, 1289–1292 (2017)

    ADS  Google Scholar 

  63. Zhou, Y.H., Zhang, X.Y., Zou, D., Wu, Q.-C., Biao, L.Y., Fang, Y.L., Shen, H.Z., Yang, C.-P.: . Opt. Express 28, 1249–1260 (2020)

    ADS  Google Scholar 

  64. Wang, Z.H., Sun, C.P., Li, Y.: . Phys. Rev. A 91, 043801 (2015)

    ADS  Google Scholar 

  65. Sandberg, M., Wilson, C.M., Persson, F., Bauch, T., Johansson, G., Shumeiko, V., Duty, T., Delsing, P.: . Appl. Phys. Lett. 92, 203501 (2008)

    ADS  Google Scholar 

Download references

Acknowledgment

This work is supported by the National Natural Science Foundation of China with Grants No. 11647054, the Science and Technology Development Program of Jilin province, China with Grant No. 2018-0520165JH, the Jiangxi Education Department Fund under Grant No. GJJ180873.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhihai Yao.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Here we give the derivation of (8):

$$ \begin{array}{@{}rcl@{}} a_{k}&=&\frac{1}{\sqrt{N}}{\sum}_{j}a_{j}e^{-ikj},\\ a_{j}&=&\frac{1}{\sqrt{N}}{\sum}_{k}a_{k}e^{ikj}. \end{array} $$
(18)

By substituting (18) into the Hamiltonian Ha, we can obtain

$$ \begin{array}{@{}rcl@{}} &&\omega_{a}{\sum}_{j}{a}_{j}^{\dag}a_{j}-\xi{\sum}_{j}(a_{j+1}^{\dag}a_{j}+{a}_{j}^{\dag}a_{j+1}),\\ &=&{\sum}_{j}\bigg\{\omega_{a}\frac{1}{\sqrt{N}}{\sum}_{k}{a}_{k}^{\dag} e^{-ikj}\frac{1}{\sqrt{N}}{\sum}_{k^{\prime}}a_{k^{\prime}}e^{ik^{\prime}j} -\xi\big[\frac{1}{\sqrt{N}}{\sum}_{k}{a}_{k}^{\dag} e^{-ik(j+1)}\frac{1}{\sqrt{N}}{\sum}_{k^{\prime}}a_{k^{\prime}}e^{ik^{\prime}j}\\ &&+\frac{1}{\sqrt{N}}{\sum}_{k}{a}_{k}^{\dag} e^{-ikj}\frac{1}{\sqrt{N}}{\sum}_{k^{\prime}}a_{k^{\prime}}e^{ik^{\prime}(j+1)}\big] \bigg\}\\ &=&{\sum}_{j}\omega_{a}\frac{1}{\sqrt{N}}{\sum}_{kk^{\prime}}{a}_{k}^{\dag} a_{k^{\prime}} e^{-i(k-k^{\prime})j} -\xi{\sum}_{j}\bigg[\frac{1}{N}{\sum}_{kk^{\prime}}{a}_{k}^{\dag} a_{k^{\prime}} e^{-i(k-k^{\prime})j}e^{-ik}\\ &&+\frac{1}{N}{\sum}_{kk^{\prime}}{a}_{k}^{\dag} a_{k^{\prime}} e^{-i(k-k^{\prime})j}e^{ik^{\prime}}\bigg]. \end{array} $$
(19)

Considering the relation

$$ \frac{1}{N}{\sum}_{j}e^{-i(k-k^{\prime})j}=\delta_{k,k^{\prime}}, $$
(20)

Equation 19 reduces to

$$ \begin{array}{@{}rcl@{}} &&\omega_{a}{\sum}_{kk^{\prime}}{a}_{k}^{\dag} a_{k^{\prime}}\delta_{k,k^{\prime}} -\xi({\sum}_{kk^{\prime}}{a}_{k}^{\dag} a_{k^{\prime}}\delta_{k,k^{\prime}}e^{-ik}+{\sum}_{kk^{\prime}}{a}_{k}^{\dag} a_{k^{\prime}}\delta_{k,k^{\prime}}e^{ik^{\prime}})\\ &=&\omega_{a}{\sum}_{k}{a}_{k}^{\dag} a_{k}-\xi({\sum}_{k}{a}_{k}^{\dag} a_{k}e^{-ik}+{\sum}_{k}{a}_{k}^{\dag} a_{k}e^{ik})\\ &=&(\omega_{a}-2\xi \cos k){\sum}_{k}{a}_{k}^{\dag} a_{k}. \end{array} $$
(21)

From (21) we can easily obtain the energy eigenvalues equation in the form of (8).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lin, H., Wang, X., Yao, Z. et al. Single-Photon Transport in One-Dimensional Coupled-Resonator Waveguide with Second-Order Nonlinearity oupling to a Nanocavity Containing a Two-Level Atom and Kerr-Nonlinearity. Int J Theor Phys 59, 2294–2307 (2020). https://doi.org/10.1007/s10773-020-04498-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-020-04498-x

Keywords

Navigation