Skip to main content
Log in

Phase-tunable single-photon transport in a one-dimensional waveguide with the extra cavity–emitter system

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Single-photon scattering properties in a one-dimensional waveguide coupled to the cavity and the two-level atom are investigated theoretically. Two cases are considered: when the one-dimensional waveguide is coupled to the cavity–emitter and when it is coupled to a cavity and two-level atom, respectively, where the cavity and the two-level atom are also coupled. In our system, the phase of the emitter–cavity–waveguide coupling strength, which cannot be eliminated by any gauge transformation, functions as a sensitive controller for the scattering behavior. The results show that the phase of the system not only can be controlled by the single-photon perfect transmission and the perfect reflection but also can adjust the position of perfect transmission and also make irregular transmission spectrum regular. We further show that our approach is experimentally feasible in currently available superconducting quantum circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kimble, H.J.: The quantum internet. Nature (London). 453, 1023 (2008)

    ADS  Google Scholar 

  2. Chen, G.-Y., Lambert, N., Chou, C.-H., Chen, Y.-N., Nor, F.: Surface plasmons in a metal nanowire coupled to colloidal quantum dots: Scattering properties and quantum entanglement. Phys. Rev. B 84, 045310 (2011)

    ADS  Google Scholar 

  3. Zheng, H., Baranger, H.U.: Persistent quantum beats and long-distance entanglement from waveguide-mediated interactions. Phys. Rev. Lett. 110, 113601 (2013)

    ADS  Google Scholar 

  4. Zheng, H., Gauthier, D.J., Baranger, H.U.: Waveguide-QED based photonic quantum computation. Phys. Rev. Lett. 111, 090502 (2013)

    ADS  Google Scholar 

  5. Gonzalez-Ballestero, C., Moreno, E., Garcia-Vidal, F.J.: Generation, manipulation, and detection of two-qubit entanglement in waveguide QED. Phys. Rev. A 89, 042328 (2014)

    ADS  Google Scholar 

  6. Facchi, P., Kim, M.S., Pascazio, S., Pepe, F.V., Pomarico, D., Tufarelli, T.: Bound states and entanglement generation in waveguide quantum electrodynamics. Phys. Rev. A 94, 043839 (2016)

    ADS  Google Scholar 

  7. Vermersch, B., Guimond, P.O., Pichler, H., Zoller, P.: Quantum State Transfer via Noisy Photonic and Phononic Waveguides. Phys. Rev. Lett. 118, 133601 (2017)

    ADS  Google Scholar 

  8. Mahmoodian, S., Lodahl, P., Sorensen, A.S.: Quantum networks with chiral-light-matter interaction in waveguides. Phys. Rev. Lett. 117, 240501 (2016)

    ADS  Google Scholar 

  9. Shen, J.T., Fan, S.H.: Coherent Single Photon Transport in a One-Dimensional Waveguide Coupledwith Superconducting Quantum Bits. Phys. Rev. Lett. 95, 213001 (2005)

    ADS  Google Scholar 

  10. Roy, D., Wilson, C.M., Firstenberg, O.: Colloquium: Strongly interacting photons in one-dimensional continuum. Rev. Mod. Phys. 89, 021001 (2017)

    MathSciNet  Google Scholar 

  11. Chang, D.E., Vuletic, V., Lukin, M.D.: Quantum nonlinear optics-photon by photon. Nat. Photonics 8, 685 (2014)

    ADS  Google Scholar 

  12. Lodahl, P., Mahmoodian, S., Stobbe, S.: Interfacing single photons and single quantum dots with photonic nanostructures. Rev. Mod. Phys. 87, 347 (2015)

    ADS  MathSciNet  Google Scholar 

  13. Su, S.L., Tian, Y.Z., Shen, H.Z., Zang, H.P., Liang, E.J., Zhang, S.: Applications of the modified Rydberg antiblockade regime with simultaneous driving. Phys. Rev. A 96(4), 042335 (2017)

    ADS  Google Scholar 

  14. Su, S.L., Gao, Y., Liang, E.J., Zhang, S.: Fast Rydberg antiblockade regime and its applications in quantum logic gates. Phys. Rev. A 95(2), 022319 (2017)

    ADS  Google Scholar 

  15. Shen, H.Z., Shang, C., Zhou, Y.H., Yi, X.X.: Unconventional single-photon blockade in non-Markovian systems. Phys. Rev. A 98(2), 023856 (2018)

    ADS  Google Scholar 

  16. Bender, N., Factor, S., Bodyfelt, J.D., Ramezani, H., Christodoulides, D.N., Ellis, F.M., Kottos, T.: Observation of asymmetric transport in structures with active nonlinearities. Phys. Rev. Lett. 110, 234101 (2013)

    ADS  Google Scholar 

  17. Chang, L., Jiang, X., Hua, S., Yang, C., Wen, J., Jiang, L., Li, G., Wang, G., Xiao, M.: Parity-time symmetry and variable optical isolation in active-passive-coupled microresonators. Nat. Photon. 8, 524 (2014)

    ADS  Google Scholar 

  18. Makris, K.G., El-Ganainy, R., Christodoulides, D.N., Musslimani, Z.H.: \(PT\)-symmetric optical lattices. Phys. Rev. A 81, 063807 (2010)

    ADS  Google Scholar 

  19. Xue, L.F., Gong, Z.R., Zhu, H.B., Wang, Z.H.: \(PT\) symmetric phase transition and photonic transmission in an optical trimer system. Opt. Express 25, 17249 (2017)

    ADS  Google Scholar 

  20. Childress, L., Dutt, M.V.G., Taylor, J.M., Zibrov, A.S., Jelezko, F., Wrachtrup, J., Hemmer, P.R., Lukin, M.D.: Coherent dynamics of coupled electron and nuclear spin qubits in diamond. Science 314, 281 (2006)

    ADS  Google Scholar 

  21. Hanson, R., Awschalom, D.D.: Coherent manipulation of single spins in semiconductors. Nature 453, 1043 (2008)

    ADS  Google Scholar 

  22. Bermudez, A., Jelezko, F., Plenio, M.B., Retzker, A.: Electron-mediated nuclear-spin interactions between distant nitrogen-vacancy centers. Phys. Rev. Lett. 107, 150503 (2011)

    ADS  Google Scholar 

  23. Yao, N.Y., Jiang, L., Gorshkov, A.V., Maurer, P.C., Giedke, G., Cirac, J.I., Lukin, M.D.: Scalable architecture for a room temperature solid-state quantum information processor. Nat. Commun. 3, 800 (2012)

    ADS  Google Scholar 

  24. Feng, G.R., Xu, G.F., Long, G.L.: Experimental realization of nonadiabatic holonomic quantum computation. Phys. Rev. Lett. 110, 190501 (2013)

    ADS  Google Scholar 

  25. Liu, Y.X., Wei, L.F., Tsai, J.S., Nori, F.: Controllable coupling between flux qubits. Phys. Rev. Lett. 96, 067003 (2006)

    ADS  Google Scholar 

  26. Niskanen, A.O., Harrabi, K., Yoshihara, F., Nakamura, Y., Lloyd, S., Tsai, J.S.: Quantum coherent tunable coupling of superconducting qubits. Science 316, 723 (2007)

    ADS  Google Scholar 

  27. Xiong, W., Jin, D.Y., Jing, J., Lam, C.H., You, J.Q.: Controllable coupling between a nanomechanical resonator and a coplanar-waveguide resonator via a superconducting flux qubit. Phys. Rev. A 92, 032318 (2015)

    ADS  Google Scholar 

  28. Duan, L.-M., Demler, E., Lukin, M.D.: Controlling spin exchange interactions of ultracold atoms in optical lattices. Phys. Rev. Lett. 91, 090402 (2003)

    ADS  Google Scholar 

  29. Banchi, L., Bayat, A., Verrucchi, P., Bose, S.: Nonperturbative entangling gates between distant qubits using uniform cold atom chains. Phys. Rev. Lett. 106, 140501 (2011)

    ADS  Google Scholar 

  30. Wang, Z.H., Du, L., Li, Y., Liu, Y.X.: Phase-controlled single-photon nonreciprocal transmission in a one-dimensional waveguide. Phys. Rev. A 100, 053809 (2019)

    ADS  Google Scholar 

  31. Zhou, Y.H., Zhang, X.Y., Zou, D.D., Wu, Q.C., Ye, B.L., Fang, Y.L., Shen, H.Z., Yang, C.P.: Controllable scattering of a single photon inside a one-dimensional coupled resonator waveguide with second-order nonlinearity. Opt. Express 28, 380250 (2020)

    ADS  Google Scholar 

  32. Yan, C.H., Jia, W.Z., Jia, X.H., Yuan, H., Li, Y., Yuan, H.D.: Utilizing competitions between optical parametric amplifications and dissipations to manipulate photon transport. Phys. Rev. A 100, 023826 (2019)

    ADS  Google Scholar 

  33. Tang, L., Tang, J.S., Zhang, W.D., Lu, G.W., Zhang, H., Zhang, Y., Xia, K.Y., Xiao, M.: On-chip chiral single-photon interface: isolation and unidirectional emission. Phys. Rev. A 99, 043833 (2019)

    ADS  Google Scholar 

  34. Stolyarov, E.V.: Few-photon Fock-state wave packet interacting with a cavity-atom system in a waveguide: exact quantum state dynamics. Phys. Rev. A 99, 023857 (2019)

    ADS  Google Scholar 

  35. Zhu, Y.T., Jia, W.Z.: Single-photon quantum router in the microwave regime utilizing double superconducting resonators with tunable coupling. Phys. Rev. A 99, 063815 (2019)

    ADS  Google Scholar 

  36. Qin, W., Nori, F.: Controllable single-photon transport between remote coupled-cavity arrays. Phys. Rev. A 93, 032337 (2016)

    ADS  Google Scholar 

  37. Jia, W.Z., Wang, Y.W., Liu, Y.X.: Efficient single-photon frequency conversion in the microwave domain using superconducting quantum circuits. Phys. Rev. A 96, 053832 (2017)

    ADS  Google Scholar 

  38. Li, X.M., Wei, L.F.: Designable single-photon quantum routings with atomic mirrors. Phys. Rev. A 92, 063836 (2015)

    ADS  Google Scholar 

  39. Yan, G.A., Lu, H., Wang, Y.P.: A single-photon switch with two quantum emitters in one-dimensional coupled-resonator waveguides. Int. J. Theor. Phys. 59, 632–640 (2020)

    MATH  Google Scholar 

  40. Huang, J.S., Zhang, J.H., Wei, L.F.: Single-photon routing with whisperinggallery resonators. J. Phys. B: At. Mol. Opt. Phys. 51, 085501 (2018)

    ADS  Google Scholar 

  41. Yan, C.H., Li, Y., Yuan, H.D., Wei, L.F.: Targeted photonic routers with chiral photon-atom interactions. Phys. Rev. A. 97, 023821 (2018)

    ADS  Google Scholar 

  42. Li, T., Miranowicz, A., Hu, X.D., Xia, K.Y., Nori, F.: Quantum memory and gates using a -type quantum emitter coupled to a chiral waveguide. Phys. Rev. A 97, 062318 (2018)

    ADS  Google Scholar 

  43. Yang, D.C., Cheng, M.T., Ma, X.S., Xu, J.P., Zhu, C.J., Huang, X.S.: Phase-modulated single-photon router. Phys. Rev. A 98, 063809 (2018)

    ADS  Google Scholar 

  44. Li, J.Y., Li, X.L., Yan, G.A.: Single-photon quantum router based on asymmetric intercavity couplings. Commun. Theor. Phys. 72(5), 055101 (2020)

    ADS  MathSciNet  MATH  Google Scholar 

  45. Cheng, M.T., Ma, X.R., Fan, J.W., Xu, J.P., Zhu, C.J.: Controllable single-photon nonreciprocal propagation between two waveguides chirally coupled to a quantum emitter. Opt. Lett. 15, 42 (2017)

    Google Scholar 

  46. Cheng, M.T., Ma, X.S., Zhang, J.Y., Wang, B.: Single photon transport in two waveguides chirally coupled by a quantum emitter. Opt. Express 17, 24 (2016)

    Google Scholar 

  47. Gonzalez-Ballestero, C., Moreno, E., Garcia-Vidal, F.J., Gonzalez-Tudela, A.: Nonreciprocal few-photon routing schemes based on chiral waveguide-emitter couplings. Phys. Rev. A 94, 063817 (2016)

    ADS  Google Scholar 

  48. Zhou, L., Yang, L.P., Li, Y., Sun, C.P.: Quantum routing of single photons with a cyclic three-Level system. Phys. Rev. Lett. 111, 103604 (2013)

    ADS  Google Scholar 

  49. Ahumada, M., Orellana, P.A., Dominguez-Adame, F., Malyshev, A.V.: Tunable single-photon quantum router. Phys. Rev. A 99, 033827 (2019)

    ADS  Google Scholar 

  50. Liu, K., Yang, J., Li, X.L., Li, J.Y., Yan, G.A.: Realization of single-photon transport in one-dimensional coupled-resonator waveguides via phase control. Ch. J. Phys. 72, 207–213 (2021)

    MathSciNet  Google Scholar 

  51. Yan, G.A., Qiao, H.X., Lu, H., Chen, A.X.: Quantum information-holding single-photon router based on spontaneous emission. SCI. CHINA Phys., Mech. Astron. 60, 9 (2017)

    Google Scholar 

  52. Shen, J.T., Fan, S.: Theory of single-photon transport in a single-mode waveguide. I. Coupling to a cavity containing a two-level atom. Phys. Rev. A 79, 023837 (2009)

    ADS  Google Scholar 

  53. Zhou, L., Dong, H., Liu, Y.X., Sun, C.P., Nori, F.: Quantum supercavity with atomic mirrors. Phys. Rev. A 78, 063827 (2008)

    ADS  Google Scholar 

  54. Zhou, L., Gong, Z.R., Liu, Y.X., Sun, C.P., Nori, F.: Controllable scattering of a single photon inside a one-dimensional resonator waveguid. Phys. Rev. Lett. 101, 100501 (2008)

    ADS  Google Scholar 

  55. Chang, Y., Gong, Z.R., Sun, C.P.: Multiatomic mirror for perfect reflection of single photons in a wide band of frequency. Phys. Rev. A 83, 013825 (2011)

    ADS  Google Scholar 

  56. Dilley, J., Nisbet-Jones, P., Shore, B.W., Kuhn, A.: Single-photon absorption in coupled atom-cavity systems. Phys. Rev. A 85, 023834 (2012)

    ADS  Google Scholar 

  57. Lu, J., Zhou, L., Kuang, L.M., Nori, F.: Single-photon router: coherent control of multichannel scattering for single photons with quantum interferences. Phys. Rev. A 89, 013805 (2014)

    ADS  Google Scholar 

  58. Shillito, R., Nemet, N., Parkins, S.: Dynamical behaviour of coupled atom-cavity systems in the single excitation limit, arXiv:1908 08181, (2019)

  59. Allman, M.S., Altomare, F., Whittaker, J.D., Cicak, K., Li, D., Sirois, A., Strong, J., Teufel, J.D., Simmonds, R.W.: rf-SQUID-mediated coherent tunable coupling between a superconducting phase qubit and a lumped-element resonator. Phys. Rev. Lett. 104, 177004 (2010)

    ADS  Google Scholar 

  60. Blais, A., Huang, R.-S., Wallraff, A., Girvin, S.M., Schoelkopf, R.J.: Cavity quantum electrodynamics for superconducting electrical circuits: An architecture for quantum computation. Phys. Rev. A 69, 062320 (2004)

    ADS  Google Scholar 

  61. Xiang, Z.L., Ashhab, S., You, J.Q., Nori, F.: Hybrid quantum circuits: superconducting circuits interacting with other quantum systems. Rev. Mod. Phys. 85, 623 (2013)

    ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation (China) under Grant No. 12147146, 12175057, and 11674089, and the Provincial Natural Science Foundation of Shandong (ZR2021QA046) and Shaanxi Youth Outstanding Talent Support Plan and Shaanxi Natural Science Foundation (Grant No.2019JQ-900).

Author information

Authors and Affiliations

Authors

Contributions

GAY implemented numerical simulations and was a major contributor in writing the manuscript. HL and HDS contributed to the initiation of the research. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Guo-An Yan.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, GA., He, Ds. & Lu, H. Phase-tunable single-photon transport in a one-dimensional waveguide with the extra cavity–emitter system. Quantum Inf Process 22, 42 (2023). https://doi.org/10.1007/s11128-022-03798-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-022-03798-x

Keywords

Navigation