Skip to main content
Log in

Asymmetric Bidirectional Quantum Teleportation via Seven-qubit Cluster State

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Bidirectional quantum teleportation realizes the quantum communication between two parties in a quantum communication network. To reduce the quantum resources consumed by quantum channels and the classical resources consumed in the communication process, we propose an asymmetric bidirectional quantum teleportation protocol via a seven-qubit cluster state as quantum channels. Alice can send the three-qubit entanglement state to Bob in the proposed protocol. Meanwhile, Bob can send the two-qubit entanglement state to Alice. Then, our protocol performs a local CNOT gate operation. Next, Alice and Bob perform the GHZ state measurement and the corresponding unitary operation to complete the process of quantum teleportation. As a result, our protocol has higher inherent efficiency and less operational complexity than other protocols.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Shor, P.W.: Algorithms for quantum computation: Discrete logarithms and factoring. In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science, pp 124–134 (1994)

  2. Ladd, T.D., Jelezko, F., Laflamme, R., Nakamura, Y., Monroe, C., OBrien, J.L.: Quantum computers. Nature 464(7285), 45–53 (2010)

    Article  ADS  Google Scholar 

  3. Alexandru, A., Bedaque, P.F., Lamm, H., Lawrence, S.: σ Models on Quantum Computers. Phys. Rev. Lett. 123(9), 090501 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  4. Beach, G., Lomont, C., Cohen, C.: Quantum image processing (quip). In: Proc. 32cd IEEE Conference on Applied Imagery Pattern Recognition Workshop, pp 39–44 (2003)

  5. Venegas-Andraca, S.E., Bose, S.: Storing, processing and retrieving an image using quantum mechanics. In: Proc. SPIE Conference Quantum Information and Computation, pp 137–147 (2003)

  6. Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quantum Inf. Process. 10(1), 63–84 (2011)

    Article  MathSciNet  Google Scholar 

  7. Yan, F., Iliyasu, A.M., Guo, Y., Yang, H.: Flexible representation and manipulation of audio signals on quantum computers. Theor. Comput. Sci. 752, 71–85 (2018)

    Article  MathSciNet  Google Scholar 

  8. Li, H.S., Fan, P., Xia, H.Y., Peng, H., Song, S.: Quantum implementation circuits of quantum signal representation and type conversion. IEEE Trans. Circuits Syst. I: Reg. Papers 66(1), 341–354 (2019)

    Article  Google Scholar 

  9. Li, H.S., Fan, P., Peng, H., Song, S., Long, G.L.: Multilevel 2-D quantum wavelet transforms. IEEE Trans. Cybern. [Online]. Available: https://ieeexplore.ieee.org/document/9337176 (2021)

  10. Li, H.S., Fan, P., Xia, H., Peng, H., Long, G.L.: Efficient quantum arithmetic operation circuits for quantum image processing. Sci. China-Phys. Mech. Astron. 63(8), 280311 (2020)

    Article  ADS  Google Scholar 

  11. Li, H.S., Fan, P., Xia, H., Long, G.L.: The circuit design and optimization of quantum multiplier and divider. Sci. China-Phys. Mech. Astron. 65(6), 260311 (2022)

    Article  ADS  Google Scholar 

  12. Long, G.L., Deng, F.G., Wang, C., Li, X.H., Wen, K., Wang, W.Y.: Quantum secure direct communication and deterministic secure quantum communication. Front. Phys. China 2(3), 251–272 (2007)

    Article  ADS  Google Scholar 

  13. Deng, F.G., Long, G.L.: Secure direct communication with a quantum one-time pad. Phys. Rev. A 69(5), 052319 (2004)

    Article  ADS  Google Scholar 

  14. Al-Amri, M., Evers, J., Zubairy, M.S.: Quantum teleportation of four-dimensional qudits. Phys. Rev. A 82(2), 022329 (2010)

    Article  ADS  Google Scholar 

  15. Deng, F.G., Li, C.Y., Li, Y.S., Zhou, H.Y., Wang, Y.: Symmetric multiparty-controlled teleportation of an arbitrary two-particle entanglement. Phys. Rev. A 72(2), 022338 (2005)

    Article  ADS  Google Scholar 

  16. Bennett, C.H., Brassard, G., Crpeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70(13), 1895–1899 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  17. Li, Y.H., Jin, X.M.: Bidirectional controlled teleportation by using nine-qubit entangled state in noisy environments. Quantum Inf. Process. 15(2), 929–945 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  18. Seida, C., El Allati, A., Metwally, N., Hassouni, Y.: Bidirectional teleportation under correlated noise. Eur. Phys. J. D 75(6), 170 (2021)

    Article  ADS  Google Scholar 

  19. Aliloute, S., El Allati, A., El Aouadi, I.: Bidirectional teleportation using coherent states. Quantum Inf. Process. 20(1), 29 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  20. Li, Y.H., Li, X.L., Sang, M.H., Nie, Y.Y., Wang, Z.S.: Bidirectional controlled quantum teleportation and secure direct communication using five-qubit entangled state. Quantum Inf. Process. 12(12), 3835–3844 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  21. Sang, M. h.: Bidirectional quantum teleportation by using five-qubit cluster state. Int. J. Theor. 55(3), 1333–1335 (2015)

    Article  MathSciNet  Google Scholar 

  22. Chen, Y.: Bidirectional controlled quantum teleportation by using Five-Qubit entangled state. Int. J. Theor. 53(5), 1454–1458 (2013)

    Article  Google Scholar 

  23. Li, Y.H., Nie, L.P., Li, X.L., Sang, M.H.: Asymmetric bidirectional controlled teleportation by using six-qubit cluster state. Int. J. Theor. 55 (6), 3008–3016 (2016)

    Article  Google Scholar 

  24. Wang, M., Li, H.S.: Bidirectional controlled quantum teleportation via two pairs of bell states. Int. J. Theor. 60(7), 2662–2667 (2021)

    Article  MathSciNet  Google Scholar 

  25. Duan, Y.J., Zha, X.W.: Bidirectional quantum controlled teleportation via a Six-Qubit entangled state. Int. J. Theor. 53(11), 3780–3786 (2014)

    Article  Google Scholar 

  26. Wang, M., Li, H.S.: Bidirectional quantum teleportation using a five-qubit cluster state as a quantum channel. Quantum Inf. Process. 21(2), 44 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  27. Yang, Y.Q., Zha, X.W., Yu, Y.: Asymmetric bidirectional controlled teleportation via seven-qubit cluster state. Int. J. Theor. 55(10), 4197–4204 (2016)

    Article  Google Scholar 

  28. Sadeghi Zadeh, M.S., Houshmand, M., Aghababa, H.: Bidirectional teleportation of a Two-Qubit state by using Eight-Qubit entangled state as a quantum channel. Int. J. Theor. 56(7), 2101–2112 (2017)

    Article  MathSciNet  Google Scholar 

  29. Zhou, R.G., Xu, R., Lan, H.: Bidirectional quantum teleportation by using Six-Qubit cluster state. IEEE Access 7, 44269–44275 (2019)

    Article  Google Scholar 

  30. Verma, V., Singh, N., Singh, R.S.: Improvement on quantum teleportation of three and four qubit states using Multi-Qubit cluster states. Int. J. Theor. 60(10), 3973–3981 (2021)

    Article  MathSciNet  Google Scholar 

  31. Kazemikhah, P., Tabalvandani, M.B., Mafi, Y., Aghababa, H.: Asymmetric bidirectional controlled quantum teleportation using eight qubit cluster state. Int. J. Theor. 61(2), 17 (2022)

    Article  MathSciNet  Google Scholar 

  32. Sang, M.H.: Bidirectional quantum controlled teleportation by using a seven-qubit entangled state. Int. J. Theor. 55(1), 380–383 (2015)

    Article  Google Scholar 

  33. Verma, V., Yadav, A.K.: Comment on quantum controlled teleportation of bell state using Seven-Qubit entangled state. Int. J. Theor. 60(1), 348–354 (2021)

    Article  MathSciNet  Google Scholar 

  34. Oh, S., Lee, S., Lee, H. W.: Fidelity of quantum teleportation through noisy channels. Phys. Rev. A 66(2), 022316 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  35. Xian-Ting, L.: Classical information capacities of some single qubit quantum noisy channels. Commun.Theor. Phys. 39(5), 537 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  36. Seida, C., El Allati, A., Metwally, N., Hassouni, Y.: Efficiency increasing of the bidirectional teleportation protocol via weak and reversal measurements. Phys. Scr. 97(2), 025102 (2022)

    Article  ADS  Google Scholar 

  37. Yuan, H., Liu, Y.M., Zhang, W., Zhang, Z.J.: Optimizing resource consumption, operation complexity and efficiency in quantum-state sharing. J. Phys. B-At. Mol. Opt. 41(14), 145506 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Science and Technology Project of Guangxi under grant no. 2020GXNSFDA238023.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-Sheng Li.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

ESM 1

(PDF 185 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dai, R., Li, HS. Asymmetric Bidirectional Quantum Teleportation via Seven-qubit Cluster State. Int J Theor Phys 61, 187 (2022). https://doi.org/10.1007/s10773-022-05157-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-05157-z

Keywords

Navigation