Skip to main content
Log in

The circuit design and optimization of quantum multiplier and divider

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

A fault-tolerant circuit is required for robust quantum computing in the presence of noise. Clifford + T circuits are widely used in fault-tolerant implementations. As a result, reducing T-depth, T-count, and circuit width has emerged as important optimization goals. A measure-and-fixup approach yields the best T-count for arithmetic operations, but it requires quantum measurements. This paper proposes approximate Toffoli, TR, Peres, and Fredkin gates with optimized T-depth and T-count. Following that, we implement basic arithmetic operations such as quantum modular adder and subtracter using approximate gates that do not require quantum measurements. Then, taking into account the circuit width, T-depth, and T-count, we design and optimize the circuits of two multipliers and a divider. According to the comparative analysis, the proposed multiplier and divider circuits have lower circuit width, T-depth, and T-count than the current works that do not use the measure-and-fixup approach. Significantly, the proposed second multiplier produces approximately 77% T-depth, 60% T-count, and 25% width reductions when compared to the existing multipliers without quantum measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. P. W. Shor, SIAM J. Comput. 26, 1484 (1997).

    Article  MathSciNet  Google Scholar 

  2. L. K. Grover, Phys. Rev. Lett. 79, 325 (1997), arXiv: quant-ph/9706033.

    Article  ADS  Google Scholar 

  3. P. Gao, K. Li, S. Wei, and G. L. Long, Sci. China-Phys. Mech. Astron. 64, 100311 (2021).

    Article  Google Scholar 

  4. C. H. Bennett, and G. Brassard, in Quantum cryptography: Public key distribution and coin tossing: Proceedings of the IEEE International Conference on Computers, Systems and Signal Processing (IEEE, New York, 1984), pp. 175–179.

    Google Scholar 

  5. C. H. Bennett, G. Brassard, C. Crépeau, R. Jozsa, A. Peres, and W. K. Wootters, Phys. Rev. Lett. 70, 1895 (1993).

    Article  ADS  MathSciNet  Google Scholar 

  6. G. L. Long, and X. S. Liu, Phys. Rev. A 65, 032302 (2002), arXiv: quant-ph/0012056.

    Article  ADS  Google Scholar 

  7. F. G. Deng, G. L. Long, and X. S. Liu, Phys. Rev. A 68, 042317 (2003), arXiv: quant-ph/0308173.

    Article  ADS  Google Scholar 

  8. L. Yang, J. W. Wu, Z. S. Lin, L. G. Yin, and G. L. Long, Sci. China-Phys. Mech. Astron. 63, 110311 (2020).

    Article  ADS  Google Scholar 

  9. Y. B. Sheng, L. Zhou, and G. L. Long, Sci. Bull. 67, 367 (2021).

    Article  Google Scholar 

  10. N. Grzesiak, R. Blümel, K. Wright, K. M. Beck, N. C. Pisenti, M. Li, V. Chaplin, J. M. Amini, S. Debnath, J. S. Chen, and Y. Nam, Nat. Commun. 11, 2963 (2020), arXiv: 1905.09294.

    Article  ADS  Google Scholar 

  11. T. D. Ladd, F. Jelezko, R. Laflamme, Y. Nakamura, C. Monroe, and J. L. O’Brien, Nature 464, 45 (2010), arXiv: 1009.2267.

    Article  ADS  Google Scholar 

  12. M. A. Nielsen, and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, Cambridge, 2000).

    MATH  Google Scholar 

  13. J. A. Smolin, and D. P. DiVincenzo, Phys. Rev. A 53, 2855 (1996).

    Article  ADS  Google Scholar 

  14. A. Peres, Phys. Rev. A 32, 3266 (1985).

    Article  ADS  MathSciNet  Google Scholar 

  15. H. Thapliyal, and N. Ranganathan, IEEE Computer Society Annual Symposium on VLSI (IEEE, Tampa, 2009), pp. 229–234.

    Google Scholar 

  16. B. Giles, and P. Selinger, Phys. Rev. A 87, 032332 (2013), arXiv: 1212.0506.

    Article  ADS  Google Scholar 

  17. V. Kliuchnikov, D. Maslov, and M. Mosca, Phys. Rev. Lett. 110, 190502 (2013), arXiv: 1212.0822.

    Article  ADS  Google Scholar 

  18. M. Amy, D. Maslov, M. Mosca, and M. Roetteler, IEEE Trans. Comput-Aided Des. Integr. Circuits Syst. 32, 818 (2013).

    Article  Google Scholar 

  19. M. Amy, D. Maslov, and M. Mosca, IEEE Trans. Comput-Aided Des. Integr. Circuits Syst. 33, 1476 (2014).

    Article  Google Scholar 

  20. D. Gosset, V. Kliuchnikov, M. Mosca, and V. Russo, arXiv: 1308.4134.

  21. H.-S. Li, P. Fan, H. Xia, H. Peng, and G.-L. Long, Sci. China-Phys. Mech. Astron. 63, 280311 (2020).

    Article  ADS  Google Scholar 

  22. P. Selinger, Phys. Rev. A 87, 042302 (2013), arXiv: 1210.0974.

    Article  ADS  Google Scholar 

  23. C. Jones, arXiv: 1709.06648v3.

  24. A. Barenco, C. H. Bennett, R. Cleve, D. P. DiVincenzo, N. Margolus, P. Shor, T. Sleator, J. A. Smolin, and H. Weinfurter, Phys. Rev. A 52, 3457 (1995), arXiv: quant-ph/9503016.

    Article  ADS  Google Scholar 

  25. M. K. Thomsen, R. Glück, and H. B. Axelsen, J. Phys. A-Math. Theor. 43, 382002 (2013).

    Article  Google Scholar 

  26. W. Van Dam, and I. E. Shparlinski, in Workshop on Quantum Computation, Communication, and Cryptography (Springer, Berlin, Heidelberg, 2008), pp. 1–10.

    Google Scholar 

  27. V. Vedral, A. Barenco, and A. Ekert, Phys. Rev. A 54, 147 (1996), arXiv: quant-ph/9511018.

    Article  ADS  MathSciNet  Google Scholar 

  28. T. G. Draper, S. A. Kutin, E. M. Rains, and K. M. Svore, arXiv: quant-ph/0406142.

  29. Y. Takahashi, and N. Kunihiro, Quantum Inf. Comput. 8, 636 (2008).

    MathSciNet  Google Scholar 

  30. Y. Takahashi, S. Tani, and N. Kunihiro, arXiv: 0910.2530.

  31. S. A. Cuccaro, T. G. Draper, S. A. Kutin, and D. P. Moulton, arXiv: quant-ph/0410184.

  32. C. Gidney, arXiv: 1212.5069v1.

  33. H. Thapliyal, E. Munoz-Coreas, and V. Khalus, Sustain. Comput. Inf. Sys. 29, 100457 (2021).

    Google Scholar 

  34. H. Thapliyal, and N. Ranganathan, ACM J. Emerg. Tech. Com. 9, 17 (2013).

    Google Scholar 

  35. H. Thapliyal, Transactions on Computational Science XXVII (Springer, Berlin, 2016), pp. 16–34.

    Google Scholar 

  36. H. Thapliyal, T. S. S. Varun, and E. Munoz-Coreas, arXiv: 1609.01241.

  37. Y. Nam, N. J. Ross, Y. Su, A. M. Childs, and D. Maslov, npj Quantum Inf. 4, 23 (2018), arXiv: 1710.07345.

    Article  ADS  Google Scholar 

  38. H. V. Jayashree, H. Thapliyal, H. R. Arabnia, and V. K. Agrawal, J. Supercomput. 72, 1477 (2016).

    Article  Google Scholar 

  39. E. Munoz-Coreas, and H. Thapliyal, IEEE Trans. Comput. 68, 729 (2019).

    Article  MathSciNet  Google Scholar 

  40. A. Barenco, A. Ekert, K. A. Suominen, and P. Törmä, Phys. Rev. A 54, 139 (1996), arXiv: quant-ph/9601018.

    Article  ADS  MathSciNet  Google Scholar 

  41. H. S. Li, P. Fan, H. Xia, S. Song, and X. He, Quantum Inf. Process. 17, 333 (2018).

    Article  ADS  Google Scholar 

  42. A. Khosropour, H. Aghababa, and B. Forouzandeh, IEEE Eighth International Conference on Information Technology: New Generations (IEEE, Las Vegas, 2011), pp. 1037–1040.

    Google Scholar 

  43. H. Thapliyal, E. Munoz-Coreas, T. S. S. Varun, and T. S. Humble, IEEE Trans. Emerg. Top. Comput. 9, 1045 (2021).

    Article  Google Scholar 

  44. C. Gidney, https://algassert.com/post/1709 (2017).

  45. E. Munoz-Coreas, and H. Thapliyal, in Proceedings of 9th IEEE International Conference on Computer Vision (IEEE, Pittsburgh, 2018), pp. 212–219.

    Google Scholar 

  46. D. Maslov, Phys. Rev. A 93, 022311 (2016), arXiv: 1508.03273.

    Article  ADS  Google Scholar 

  47. H. S. Li, P. Fan, H. Y. Xia, H. Peng, and S. Song, IEEE Trans. Circuits Syst. I 66, 341 (2019).

    Article  Google Scholar 

  48. F. Yan, A. M. Uiyasu, Y. Guo, and H. Yang, Theor. Comput. Sci. 752, 71 (2018).

    Article  Google Scholar 

  49. C. Y. Pang, R. G. Zhou, B. Q. Hu, W. W. Hu, and A. El-Rafei, Inf. Sci. 473, 121 (2019).

    Article  Google Scholar 

  50. H. S. Li, P. Fan, H. Peng, S. Song, and G. L. Long, IEEE Trans. Cybern. 1(2021).

  51. S. Wei, H. Li, and G. L. Long, Research, 2020, 1486935 (2020).

    Article  ADS  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61762012, 61763014, and 62062035), and the Science and Technology Project of Guangxi (Grant No. 2020GXNSFDA238023).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hai-Sheng Li or Gui-Lu Long.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, HS., Fan, P., Xia, H. et al. The circuit design and optimization of quantum multiplier and divider. Sci. China Phys. Mech. Astron. 65, 260311 (2022). https://doi.org/10.1007/s11433-021-1874-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-021-1874-2

PACS number(s)

Navigation