Skip to main content
Log in

Optical Response with Tunneling Coupling in a Hybrid Optomechanical System

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We theoretically analyze the phenomenon of Optomechanically Induced Transparency (OMIT) of a weak probe field in a hybrid optomechanical system, consisting of an optical cavity, a mechanical resonator and Quantum Dot molecules(QDs), in addition, in some parameter regimes, the probe transmission can exceed unity. Furthermore, the phase dispersion and group delay at the frequency of the probe field have been studied, we can control the fast light effect by tuning the driving field and tunneling coupling, attributed to quantum interference and Tunneling effect, it provides a flexible way to control optical response and propagation in such a hybrid optomechanical system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Vitali, D., Gigan, S., Ferreira, A., Böhm, H.R., Tombesi, P., Guerreiro, A., Vedral, V., Zeilinger, A., Aspelmeyer, M.: Optomechanical entanglement between a movable mirror and a cavity field. Phys. Rev. Lett. 98, 030405 (2007). https://doi.org/10.1103/PhysRevLett.98.030405

    Article  ADS  Google Scholar 

  2. Kippenberg, T.J., Vahala, K.J.: Cavity optomechanics: Back-action at the mesoscale. Science 321(5893), 1172–1176 (2008). https://doi.org/10.1126/science.1156032

    Article  ADS  Google Scholar 

  3. Gröblacher, S., Hammerer, K., Vanner, M.R., Aspelmeyer, M.: Observation of strong coupling between a micromechanical resonator and an optical cavity field. Nature. 460, 724 (2009). https://doi.org/10.1038/nature08171

    Article  ADS  Google Scholar 

  4. Aspelmeyer, M., Kippenberg, T.J., Marquardt, F.: Cavity optomechanics. Rev. Mod. Phys. 86, 1391–1452 (2014). https://doi.org/10.1103/RevModPhys.86.1391

    Article  ADS  Google Scholar 

  5. Chen, X., Liu, Y.-C., Peng, P., Zhi, Y., Xiao, Y.-F.: Cooling of macroscopic mechanical resonators in hybrid atom-optomechanical systems. Phys. Rev. A 92, 033841 (2015). https://doi.org/10.1103/PhysRevA.92.033841

    Article  ADS  Google Scholar 

  6. Liu, Y.-C., Xiao, Y.-F., Luan, X., Wong, C.W.: Optomechanically-induced-transparency cooling of massive mechanical resonators to the quantum ground state. Phys. Rev. A 58, 1 (2015). https://doi.org/10.1007/s11433-014-5635-6

    Article  Google Scholar 

  7. Agarwal, G.S., Huang, S.: Electromagnetically induced transparency in mechanical effects of light. Phys. Rev. A 81, 041803 (2010). https://doi.org/10.1103/PhysRevA.81.041803

    Article  ADS  Google Scholar 

  8. Weis, S., Riviėre, R., Deléglise, S., Gavartin, E., Arcizet, O., Schliesser, A., Kippenberg, T.J.: Optomechanically induced transparency. Science 330(6010), 1520–1523 (2010). https://doi.org/10.1126/science.1195596

    Article  ADS  Google Scholar 

  9. Safavi-Naeini, A.H., Alegre, T.P.M., Chan, J., Eichenfield, M., Winger, M., Lin, Q., Hill, J.T., Chang, D.E., Painter, O.: Electromagnetically induced transparency and slow light with optomechanics. Nature 472, 69 (2011). https://doi.org/10.1038/nature09933

    Article  ADS  Google Scholar 

  10. Xiong, H., Si, L.-G., Zheng, A.-S., Yang, X., Wu, Y.: Higher-order sidebands in optomechanically induced transparency. Phys. Rev. A 86, 013815 (2012). https://doi.org/10.1103/PhysRevA.86.013815

    Article  ADS  Google Scholar 

  11. Yan, X.-B.: Optomechanically induced transparency and gain. Phys. Rev. A 101, 043820 (2020). https://doi.org/10.1103/PhysRevA.101.043820

    Article  ADS  Google Scholar 

  12. Xuereb, A., Barbieri, M., Paternostro, M.: Multipartite optomechanical entanglement from competing nonlinearities. Phys. Rev. A 86, 013809 (2012). https://doi.org/10.1103/PhysRevA.86.013809

    Article  ADS  Google Scholar 

  13. Liao, Q., Xiao, X., Nie, W., Zhou, N.: Transparency and tunable slow-fast light in a hybrid cavity optomechanical system. Opt. Express 28 (4), 5288–5305 (2020). https://doi.org/10.1364/OE.382254

    Article  ADS  Google Scholar 

  14. Liu, J.-H., Yu, Y.-F., Zhang, Z.-M.: Nonreciprocal transmission and fast-slow light effects in a cavity optomechanical system. Opt. Express 27(11), 15382–15390 (2019). https://doi.org/10.1364/OE.27.015382

    Article  ADS  Google Scholar 

  15. Jiang, C., Cui, Y., Zhai, Z., Yu, H., Li, X., Chen, G.: Tunable slow and fast light in parity-time-symmetric optomechanical systems with phonon pump. Opt. Express 26(22), 28834–28847 (2018). https://doi.org/10.1364/OE.26.028834

    Article  ADS  Google Scholar 

  16. Sarma, B., Sarma, A.K.: Controllable optical bistability in a hybrid optomechanical system. J. Opt. Soc. Am. B 33(7), 1335–1340 (2016). https://doi.org/10.1364/JOSAB.33.001335

    Article  ADS  Google Scholar 

  17. Kazemi, S.H., Ghanbari, S., Mahmoudi, M.: Controllable optical bistability in a cavity optomechanical system with a bose-einstein condensate. Laser Physics 26(5), 055502 (2016). https://doi.org/10.1088/1054-660x/26/5/055502

    Article  ADS  Google Scholar 

  18. Chang, Y., Shi, T., Liu, Y.-X., Sun, C.P., Nori, F.: Multistability of electromagnetically induced transparency in atom-assisted optomechanical cavities. Phys. Rev. A 83, 063826 (2011). https://doi.org/10.1103/PhysRevA.83.063826

    Article  ADS  Google Scholar 

  19. Rabl, P.: Photon blockade effect in optomechanical systems. Phys. Rev. Lett. 107, 063601 (2011). https://doi.org/10.1103/PhysRevLett.107.063601

    Article  ADS  Google Scholar 

  20. Ma, Y., Danilishin, S.L., Zhao, C., Miao, H., Korth, W.Z., Chen, Y., Ward, R.L., Blair, D.G.: Narrowing the filter-cavity bandwidth in gravitational-wave detectors via optomechanical interaction. Phys. Rev. Lett. 113, 151102 (2014). https://doi.org/10.1103/PhysRevLett.113.151102

    Article  ADS  Google Scholar 

  21. Großardt, A., Bateman, J., Ulbricht, H., Bassi, A.: Optomechanical test of the schrödinger-newton equation. Phys. Rev. D 93, 096003 (2016). https://doi.org/10.1103/PhysRevD.93.096003

    Article  ADS  Google Scholar 

  22. Ranjit, G., Cunningham, M., Casey, K., Geraci, A.A.: Zeptonewton force sensing with nanospheres in an optical lattice. Phys. Rev. A 93, 053801 (2016). https://doi.org/10.1103/PhysRevA.93.053801

    Article  ADS  Google Scholar 

  23. Arcizet, O., Cohadon, P.-F., Briant, T., Pinard, M., Heidmann, A., Mackowski, J.-M., Michel, C., Pinard, L., Français, O., Rousseau, L.: High-sensitivity optical monitoring of a micromechanical resonator with a quantum-limited optomechanical sensor. Phys. Rev. Lett. 97, 133601 (2006). https://doi.org/10.1103/PhysRevLett.97.133601

    Article  ADS  Google Scholar 

  24. Vučković, J., Yamamoto, Y.: Photonic crystal microcavities for cavity quantum electrodynamics with a single quantum dot. Appl. Phys. Lett 82, 2374 (2003). https://doi.org/10.1063/1.1567824

    Article  ADS  Google Scholar 

  25. Jelezko, F., Wrachtrup, J.: Single defect centres in diamond: A review. Physica Status Solidi (a) 203(13), 3207–3225 (2006). https://doi.org/10.1002/pssa.200671403

    Article  ADS  Google Scholar 

  26. Michler, P.: Single semiconductor quantum dots.Springer (2009)

  27. Englund, D., Fattal, D., Waks, E., Solomon, G., Zhang, B., Nakaoka, T., Arakawa, Y., Yamamoto, Y., Vučković, J.: Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal. Phys. Rev. Lett. 95, 013904 (2005). https://doi.org/10.1103/PhysRevLett.95.013904

    Article  ADS  Google Scholar 

  28. Brossard, F.S.F., Xu, X.L., Williams, D.A., Hadjipanayi, M., Hugues, M., Hopkinson, M., Wang, X., Taylor, R.A.: Strongly coupled single quantum dot in a photonic crystal waveguide cavity. Appl. Phys. Lett. 97(11), 111101 (2010). https://doi.org/10.1063/1.3487937

    Article  ADS  Google Scholar 

  29. Andreas, R., et al.: Strongly correlated photons on a chip. Nature Photonics 6, 93–96 (2011). https://doi.org/10.1038/nphoton.2011.321

    Google Scholar 

  30. Peter, L., et al.: Controlling the dynamics of spontaneous emission from quantum dots by photonic crystals. Nat. Photonics 430, 654–657 (2004). https://doi.org/10.1038/nature02772

    Article  Google Scholar 

  31. Bhattacherjee, A.B., Hasan, M.S.: Controllable optical bistability and fano line shape in a hybrid optomechanical system assisted by kerr medium: possibility of all optical switching. J. Mod. Opt. 65(14), 1688–1697 (2018). https://doi.org/10.1080/09500340.2018.1455917

    Article  MathSciNet  ADS  Google Scholar 

  32. Bhatt, V., Barbhuiya, S.A., Jha, P.K., Bhattacherjee, A.B.: Controllable bistable optical switch and normal mode splitting in hybrid optomechanical semiconductor microcavity containing single quantum dot driven by amplitude modulated field. Journal of Physics B: Atomic, Molecular and Optical Physics 53(15), 155402 (2020). https://doi.org/10.1088/1361-6455/ab91e1

    Article  ADS  Google Scholar 

  33. Degen, C.L., Reinhard, F., Cappellaro, P.: Quantum sensing. Rev. Mod. Phys. 89, 035002 (2017). https://doi.org/10.1103/RevModPhys.89.035002

    Article  MathSciNet  ADS  Google Scholar 

  34. She, Y., Zheng, X., Wang, D., Zhang, W.: Controllable double tunneling induced transparency and solitons formation in a quantum dot molecule. Opt. Express 21(14), 17392–17403 (2013). https://doi.org/10.1364/OE.21.017392

    Article  ADS  Google Scholar 

  35. Gardiner, C.W., Collett, M.J.: Input and output in damped quantum systems: Quantum stochastic differential equations and the master equation. Phys. Rev. A 31, 3761–3774 (1985). https://doi.org/10.1103/PhysRevA.31.3761

    Article  MathSciNet  ADS  Google Scholar 

  36. Clerk, A.A., Devoret, M.H., Girvin, S.M., Marquardt, F., Schoelkopf, R.J.: Introduction to quantum noise, measurement, and amplification. Rev. Mod. Phys. 82, 1155–1208 (2010). https://doi.org/10.1103/RevModPhys.82.1155

    Article  MathSciNet  MATH  ADS  Google Scholar 

  37. He, Q., Badshah, F., Din, R.U., Zhang, H., Hu, Y., Ge, G.-Q.: Optomechanically induced transparency and the long-lived slow light in a nonlinear system. J. Opt. Soc. Am. B 35(7), 1649–1657 (2018). https://doi.org/10.1364/JOSAB.35.001649

    Article  ADS  Google Scholar 

  38. Al-Nashy, B., Amin, S.M.M., Al-Khursan, A.H.: Kerr effect in y-configuration double-quantum-dot system. J. Opt. Soc. Am. B 31(8), 1991–1996 (2014). https://doi.org/10.1364/JOSAB.31.001991

    Article  ADS  Google Scholar 

  39. Fleischhauer, M., Imamoglu, A., Marangos, J.P.: Electromagnetically induced transparency: Optics in coherent media. Rev. Mod. Phys. 77, 633–673 (2005). https://doi.org/10.1103/RevModPhys.77.633

    Article  ADS  Google Scholar 

  40. Wu, Y., Yang, X.: Electromagnetically induced transparency in v-, Λ-, and cascade-type schemes beyond steady-state analysis. Phys. Rev. A 71, 053806 (2005). https://doi.org/10.1103/PhysRevA.71.053806

    Article  ADS  Google Scholar 

  41. Si, L.-G., Xiong, H., Zubairy, M.S., Wu, Y.: Optomechanically induced opacity and amplification in a quadratically coupled optomechanical system. Phys. Rev. A 95, 033803 (2017). https://doi.org/10.1103/PhysRevA.95.033803

    Article  ADS  Google Scholar 

  42. Restrepo, J., Ciuti, C., Favero, I.: Single-polariton optomechanics. Phys. Rev. Lett. 112, 013601 (2014). https://doi.org/10.1103/PhysRevLett.112.013601

    Article  ADS  Google Scholar 

  43. Restrepo, J., Favero, I., Ciuti, C.: Fully coupled hybrid cavity optomechanics: Quantum interferences and correlations. Phys. Rev. A 95, 023832 (2017). https://doi.org/10.1103/PhysRevA.95.023832

    Article  ADS  Google Scholar 

  44. Wang, H., Gu, X., Liu, Y.-X., Miranowicz, A., Nori, F.: Optomechanical analog of two-color electromagnetically induced transparency: Photon transmission through an optomechanical device with a two-level system. Phys. Rev. A 90, 023817 (2014). https://doi.org/10.1103/PhysRevA.90.023817

    Article  ADS  Google Scholar 

  45. Borges, H.S., Sanz, L., Villas-Bôas, J.M., Diniz Neto, O.O., Alcalde, A.M.: Tunneling induced transparency and slow light in quantum dot molecules. Phys. Rev. B 85, 115425 (2012). https://doi.org/10.1103/PhysRevB.85.115425

    Article  ADS  Google Scholar 

  46. Jiang, C., Cui, Y., Zhai, Z., Yu, H., Li, X., Chen, G.: Phase-controlled amplification and slow light in a hybrid optomechanical system. Opt. Express 27(21), 30473–30485 (2019). https://doi.org/10.1364/OE.27.030473

    Article  ADS  Google Scholar 

  47. Akram, M.J., Khan, M.M., Saif, F.: Tunable fast and slow light in a hybrid optomechanical system. Phys. Rev. A 92, 023846 (2015). https://doi.org/10.1103/PhysRevA.92.023846

    Article  ADS  Google Scholar 

  48. Yan, X.-B.: Optomechanically induced ultraslow and ultrafast light. Physica E: Low-dimensional Systems and Nanostructures 131, 114759 (2021). https://doi.org/10.1016/j.physe.2021.114759

    Article  Google Scholar 

  49. Borges, H.S., Alcalde, A.M., Ulloa, S.E.: Exchange interaction and tunneling-induced transparency in coupled quantum dots. Phys. Rev. B 90, 205311 (2014). https://doi.org/10.1103/PhysRevB.90.205311

    Article  ADS  Google Scholar 

  50. O’Brien, J.L., Furusawa, A., Vučković, J.: Photonic quantum technologies. Nat. Photonics 3, 687 (2009). https://doi.org/10.1038/nphoton.2009.229

    Article  ADS  Google Scholar 

Download references

Acknowledgments

We submit our thanks to Yaotai Kang, Yukuai Liu and Bingwen Yang for valuable suggestions in our manuscript. We also acknowledge National Natural Science Foundation of China under Grant No. 11704287, Key Research Platform and Program in Universities of Department of Education of Guangdong Province (No.2020GCZX003) , State Key Laboratory of Advanced Materials and Electronic Components (No.FHR-JS-202011007) for financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing-Yan Li.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix A:: Calculation of c +

Appendix A:: Calculation of c +

When substituting the exponential form ansatz into (15), we get eight equations as follows:

$$\big[\kappa+i {\Delta}_{1}-i \delta+i g_{1}(b_{s}+b_{s}^{*})\big]c_{+}=-i g_{1} c_{s}(b_{-}^{*}+b_{+})-i g_{2} A_{+}+ \varepsilon_{p},$$
(A1)
$$\big[\kappa+i {\Delta}_{1}+i \delta+i g_{1}(b_{s}+b_{s}^{*})\big]c_{-}=-i g_{1} c_{s}(b_{+}^{*}+b_{-})-i g_{2} A_{-},$$
(A2)
$$(\gamma_{m}+i \omega_{m}-i \delta)b_{+}=i g_{1} c_{s}^{*} c_{+}+i g_{1} c_{s} c_{-}^{*},$$
(A3)
$$(\gamma_{m}+i \omega_{m}+i \delta)b_{-}=i g_{1} c_{s}^{*} c_{-}+i g_{1} c_{s} c_{+}^{*},$$
(A4)
$$(\gamma_{1}+i {\Delta}_{2}-i \delta)A_{+}=-i g_{2} c_{+}-i T_{e} B_{+},$$
(A5)
$$(\gamma_{1}+i {\Delta}_{2}+i \delta)A_{-}=-i g_{2} c_{-}-i T_{e} B_{-},$$
(A6)
$$(\gamma_{2}+i {\Delta}_{3}-i \delta)B_{+}=-i T_{e} A_{+},$$
(A7)
$$(\gamma_{2}+i {\Delta}_{3}+i \delta)B_{-}=-i T_{e} A_{-}.$$
(A8)

One of its solutions is

$$c_{+}=\frac{1}{M_{3}}O_{2}\varepsilon_{p}\big[O_{1}O_{3}+i g_{1}c_{s}M_{1}O_{1}O_{3}+{g_{1}^{2}} \lvert{c_{s}}\rvert^{2}\big],$$
(A9)

where \(O_{1}=\kappa -i{\Delta }_{1}-i\delta -i g_{1} (b_{s}+b_{s}^{*})\), \(O_{2}=({\Gamma }_{1}-i\delta )({\Gamma }_{2}-i\delta )+{T_{e}^{2}}\), O3 = γm + iωmiδ, \(O_{4}=\kappa +i{\Delta }_{1}-i\delta +i g_{1} (b_{s}+b_{s}^{*})\), \(M_{1}=\frac {ig_{1}c_{s}^{*}}{O_{1}O_{3}{g_{2}^{2}} \lvert {c_{s}}\rvert ^{2}}\big [O_{1}O_{3}+{g_{1}^{2}} \lvert {c_{s}}\rvert ^{2} \big ]\varepsilon _{p}\), \(M_{2}=\frac {ic_{s}^{*}O_{1}O_{2}+i{g_{2}^{2}} c_{s}({\Gamma }_{2}-i\delta )}{g_{1} \lvert {c_{s}}\rvert ^{2} O_{2}}+\frac {2iM_{1}}{\varepsilon _{p}}\big [{\Delta }_{1}+g_{1}(b_{s}+b_{s}^{*})\big ]\) and \(M_{3}=O_{1}O_{2}O_{3}O_{4}+i g_{1} c_{s} M_{2} O_{1}O_{2}O_{3}+2i{g_{1}^{2}} \lvert {c_{s}}\rvert ^{2} O_{2}\big [{\Delta }_{1}+g_{1}(b_{s}+b_{s}^{*})\big ]+{g_{2}^{2}} O_{1}O_{3}({\Gamma }_{2}-i\delta )\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, XX., Li, JY., Cheng, XX. et al. Optical Response with Tunneling Coupling in a Hybrid Optomechanical System. Int J Theor Phys 61, 163 (2022). https://doi.org/10.1007/s10773-022-05151-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-05151-5

Keywords

Navigation