Skip to main content
Log in

Controllable transparency and slow–fast light in an optomechanical system with a triple quantum well

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

The optical response in a hybrid optomechanical system containing a triple quantum well (TQW) is investigated theoretically. The optomechanical cavity is driven by a strong pump field and a weak probe field. We show that multiple electromagnetically induced transparency windows and optomechanically induced transparency (OMIT) window exist simultaneously for the weak probe field due to the Jaynes–Cummings coupling and optomechanical coupling respectively. Furthermore, the system absorption spectra can be tuned by changing the system coupling strength. Especially, when two external control lasers are applied to the TQW with frequency detuning, multiple transparency windows can be illustrated and adjusted by the external fields. Therefore, via changing the external coupling fields, we can realize manipulating the OMIT transparency window, tunable group delay and switch from fast light to slow light. Such a system may be much practical for the flexibility of TQW in the quantum information processing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Akram, M.J., Ghafoor, F., Saif, F.: Electromagnetically induced transparency and tunable fano resonances in hybrid optomechanics. J. Phys. B Atom. Mol. Opt. Phys. 48(6), 065502 (2015)

    ADS  Google Scholar 

  • Akram, M.J., Ghafoor, F., Khan, et al.: Control of Fano resonances and slow light using Bose–Einstein condensates in a nanocavity. Phys. Rev. A 95(2), 023810 (2017)

    ADS  Google Scholar 

  • Aspelmeyer, M., Kippenberg, T.J., Marquardt, F.: Cavity optomechanics. Rev. Mod. Phys. 86(4), 1391 (2014)

    ADS  Google Scholar 

  • Bayrakli, I.: Electromagnetically induced transparency in natural and artificial molecules. Opt. Laser Technol. 141, 107168 (2021)

    CAS  Google Scholar 

  • Bian, X., Zhang, Y., Zhai, Z., et al.: Enhanced four-wave mixing in P T-symmetric optomechanical systems. Opt. Express 28(7), 9049–9061 (2020)

    PubMed  ADS  Google Scholar 

  • Černotík, O., Genes, C., Dantan, A.: Interference effects in hybrid cavity optomechanics. Quantum Sci. Technol. 4(2), 024002 (2019)

    ADS  Google Scholar 

  • Chen, H.: Robust four-wave mixing and double second-order optomechanically induced transparency sideband in a hybrid optomechanical system. Photonics 8(7), 234 (2021)

    Google Scholar 

  • Chen, M., Xiao, Z., Lu, X., et al.: Simulation of dynamically tunable and switchable electromagnetically induced transparency analogue based on metal-graphene hybrid metamaterial. Carbon 159, 273–282 (2020)

    CAS  Google Scholar 

  • Hafeez, A., Abbas, M., Qamar, S.: Optomechanically induced transparency and Fano resonances in a graphene-based nanocavity. JOSA B 36(11), 3070–3078 (2019)

    CAS  ADS  Google Scholar 

  • He, Q., Badshah, F., Din, R.U., et al.: Multiple transparency in a multimode quadratic coupling optomechanical system with an ensemble of three-level atoms. JOSA B 35(10), 2550–2561 (2018)

    CAS  ADS  Google Scholar 

  • Hsu, H., Cheng, C.Y., Shiu, J.S., et al.: Quantum fidelity of electromagnetically induced transparency: the full quantum theory. Opt. Express 30(2), 2097–2111 (2022)

    CAS  PubMed  ADS  Google Scholar 

  • Hussain, A., Abbas, M.: Double transparency with slow and fast light in an optomechanical system. Opt. Commun. 461, 125284 (2020)

    Google Scholar 

  • Huy, B.N., Le Van, D., Xuan, K.D.: Controllable optical properties of multiple electromagnetically induced transparency in gaseous atomic media. Commun. Phys. 29(1), 1–1 (2019)

    ADS  Google Scholar 

  • Jing, H., Özdemir, ŞK., Geng, Z., et al.: Optomechanically-induced transparency in parity-time-symmetric microresonators. Sci. Rep. 5(1), 9663 (2015)

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Karuza, M., Biancofiore, C., Bawaj, M., et al.: Optomechanically induced transparency in a membrane-in-the-middle setup at room temperature. Phys. Rev. A 88(1), 013804 (2013)

    ADS  Google Scholar 

  • Kong, C., Xiong, H., Wu, Y.: Coulomb-interaction-dependent effect of high-order sideband generation in an optomechanical system. Phys. Rev. A 95(3), 033820 (2017)

    ADS  Google Scholar 

  • Lai, D.G., Wang, X., Qin, W., et al.: Tunable optomechanically induced transparency by controlling the dark-mode effect. Phys. Rev. A 102(2), 023707 (2020)

    MathSciNet  CAS  ADS  Google Scholar 

  • Lei, X., Ma, L., Yan, J., et al.: Electromagnetically induced transparency quantum memory for non-classical states of light. Adv. Phys. X 7(1), 2060133 (2022)

    Google Scholar 

  • Li, W., Jiang, Y., Li, C., et al.: Parity-time-symmetry enhanced optomechanically-induced- transparency. Sci. Rep. 6(1), 31095 (2016)

    CAS  PubMed  PubMed Central  ADS  Google Scholar 

  • Liao, Q., Xiao, X., Nie, W., et al.: Transparency and tunable slow-fast light in a hybrid cavity optomechanical system. Opt. Express 28(4), 5288–5305 (2020)

    PubMed  ADS  Google Scholar 

  • Liu, Y., Davanço, M., Aksyuk, V., et al.: Electromagnetically induced transparency and wideband wavelength conversion in silicon nitride microdisk optomechanical resonators. Phys. Rev. Lett. 110(22), 223603 (2013)

    PubMed  ADS  Google Scholar 

  • Liu, Y.C., Li, B.B., Xiao, Y.F.: Electromagnetically induced transparency in optical microcavities. Nanophotonics 6(5), 789–811 (2017)

    Google Scholar 

  • Liu, Z.X., Xiong, H., Wu, Y.: Generation and amplification of a high-order sideband induced by two-level atoms in a hybrid optomechanical system. Phys. Rev. A 97(1), 013801 (2018)

    CAS  ADS  Google Scholar 

  • Liu, H., Qin, L.G., Tian, L.J., et al.: Opto-electromechanically induced transparency in a hybrid opto-electromechanical system. Chin. Phys. B 28(10), 108502 (2019)

    CAS  ADS  Google Scholar 

  • Ma, L., Slattery, O., Tang, X.: Optical quantum memory based on electromagnetically induced transparency. J. Opt. 19(4), 043001 (2017)

    PubMed  PubMed Central  ADS  Google Scholar 

  • Ozturk, O., Ozturk, E., Elagoz, S.: Linear and nonlinear optical absorption coefficient and electronic features of triple GaAlAs/GaAs and GaInAs/GaAs quantum wells depending on barrier widths. Optik 180, 394–405 (2019)

    CAS  ADS  Google Scholar 

  • Pan, G., Xiao, R., Chen, H., et al.: Multicolor optomechanically induced transparency in a distant nano-electro-optomechanical system assisted by two-level atomic ensemble. Laser Phys. 31(6), 065202 (2021)

    CAS  ADS  Google Scholar 

  • Qian, L.B., Yan, X.B.: Perfect optomechanically induced transparency in two-cavity optomechanics. Front. Phys. 18(5), 52301 (2023)

    ADS  Google Scholar 

  • Qin, H., Ding, M., Yin, Y.: Induced transparency with optical cavities. Adv. Photon. Res. 1(1), 2000009 (2020)

    Google Scholar 

  • Qu, K., Agarwal, G.S.: Fano resonances and their control in optomechanics. Phys. Rev. A 87(6), 063813 (2013)

    ADS  Google Scholar 

  • Qu, Y., Shen, S., Li, J.: Phase-dependent Fano-shape optomechanically induced transparency. Appl. Opt. 57(26), 7444–7454 (2018)

    CAS  PubMed  ADS  Google Scholar 

  • Sayrac, M., Kaynar, E., Ungan, F.: The effect of structure parameters and static electric field on the nonlinear optical properties of triple InGaAs/GaAs quantum well. J. Mol. Struct. 1273, 134252 (2023)

    CAS  Google Scholar 

  • Sete, E.A., Eleuch, H.: Controllable nonlinear effects in an optomechanical resonator containing a quantum well. Phys. Rev. A 85(4), 043824 (2012)

    ADS  Google Scholar 

  • Sohail, A., Zhang, Y., Bary, G., et al.: Tunable optomechanically induced transparency and fano resonance in optomechanical system with levitated nanosphere. Int. J. Theor. Phys. 57, 2814–2827 (2018)

    Google Scholar 

  • Tang, C., Lan, Y., Dutta, M., et al.: AlGaAs/GaAs triple quantum well photodetector at 5µm wavelength—a simulation study. IEEE J. Quantum Electron. 52(11), 1–8 (2016)

    CAS  Google Scholar 

  • Tuzemen, A.T., Dakhlaoui, H., Mora-Ramos, M.E., et al.: The nonlinear optical properties of GaAs/GaAlAs triple quantum well: role of the electromagnetic fields and structural parameters. Physica B 646, 414286 (2022)

    CAS  Google Scholar 

  • Ullah, K.: Control of electromagnetically induced transparency and Fano resonances in a hybrid optomechanical system. Eur. Phys. J. D 73, 1–9 (2019)

    Google Scholar 

  • Wang, X.F., Chen, B.: Four-wave mixing response in a hybrid atom-optomechanical system. JOSA B 36(2), 162–167 (2019)

    ADS  Google Scholar 

  • Wang, T., Zheng, M.H., Bai, C.H., et al.: Normal-mode splitting and optomechanically induced absorption, amplification, and transparency in a hybrid optomechanical system. Ann. Phys. 530(10), 1800228 (2018)

    Google Scholar 

  • Wang, C., Jiang, X., Zhao, G., et al.: Electromagnetically induced transparency at a chiral exceptional point. Nat. Phys. 16(3), 334–340 (2020)

    CAS  Google Scholar 

  • Weis, S., Rivière, R., Deléglise, S., et al.: Optomechanically induced transparency. Science 330(6010), 1520–1523 (2010)

    CAS  PubMed  ADS  Google Scholar 

  • Wu, S.C., Qin, L.G., Lu, J., et al.: Phase-dependent double optomechanically induced transparency in a hybrid optomechanical cavity system with coherently mechanical driving. Chin. Phys. B 28(7), 074204 (2019)

    CAS  ADS  Google Scholar 

  • Xiong, H., Wu, Y.: Fundamentals and applications of optomechanically induced transparency. Appl. Phys. Rev. 5(3), 031305 (2018)

    ADS  Google Scholar 

  • Xiong, H., Fan, Y.W., Yang, X., et al.: Radiation pressure induced difference-sideband generation beyond linearized description. Appl. Phys. Lett. 109(6), 061108 (2016a)

    ADS  Google Scholar 

  • Xiong, H., Si, L.G., Lü, X.Y., et al.: Optomechanically induced sum sideband generation. Opt. Express 24(6), 5773–5783 (2016b)

    PubMed  ADS  Google Scholar 

  • Yadav, S., Bhattacherjee, A.B.: Nonlinear optical response in coupled quantum wells optomechanical microcavity. Phys. Scr. 97(1), 015102 (2022)

    ADS  Google Scholar 

  • Yan, X.B.: Optomechanically induced transparency and gain. Phys. Rev. A 101(4), 043820 (2020)

    CAS  ADS  Google Scholar 

  • Yan, X.B.: Optomechanically induced optical responses with non-rotating wave approximation. J. Phys. B Atom. Mol. Opt. Phys. 54(3), 035401 (2021a)

    CAS  ADS  Google Scholar 

  • Yan, X.B.: Optomechanically induced ultraslow and ultrafast light. Physica E 131, 114759 (2021b)

    Google Scholar 

  • Yan, X.B., Jia, W.Z., et al.: Optomechanically induced amplification and perfect transparency in double-cavity optomechanics. Front. Phys. 10, 351–357 (2015)

    ADS  Google Scholar 

  • Yang, Q., Hou, B.P., Lai, D.G.: Local modulation of double optomechanically induced transparency and amplification. Opt. Express 25(9), 9697–9711 (2017)

    CAS  PubMed  ADS  Google Scholar 

  • Yu, C., Yang, W., Sun, L., et al.: Controllable transparency and slow light in a hybrid optomechanical system with quantum dot molecules. Opt. Quant. Electron. 52, 1–11 (2020)

    Google Scholar 

  • Zhu, Y.J., Bai, C.H., Wang, T., et al.: Optomechanically induced transparency, amplification, and fast–slow light transitions in an optomechanical system with multiple mechanical driving phases. JOSA B 37(3), 888–893 (2020)

    CAS  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos. 11447182 and 11647122), the Natural Science Foundation of Hubei Province (Grant Nos. 2022CFB475 and 2018CFB672), the Project of the Hubei Provincial Department of Education (Grant No. B2021215), and the Natural Science Foundation of Xiaogan City (Grant No. XGKJ2021010002).

Funding

This work is supported by the National Natural Science Foundation of China (Grant Nos. 11447182 and 11647122), the Natural Science Foundation of Hubei Province (Grant Nos. 2022CFB475 and 2018CFB672), the Project of the Hubei Provincial Department of Education (Grant No. B2021215), and the Natural Science Foundation of Xiaogan City (Grant No. XGKJ2021010002).

Author information

Authors and Affiliations

Authors

Contributions

Chunchao Yu wrote the main manuscript text and Xuqiang Guan prepared Figs. 68. All authors reviewed the manuscript.

Corresponding authors

Correspondence to Chunchao Yu or Wenxing Yang.

Ethics declarations

Conflict of interest

Not applicable.

Ethical approval

Not applicable.

Availability of data and materials

Not applicable.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yu, C., Guan, X., Yang, W. et al. Controllable transparency and slow–fast light in an optomechanical system with a triple quantum well. Opt Quant Electron 56, 41 (2024). https://doi.org/10.1007/s11082-023-05631-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-023-05631-w

Keywords

Navigation