Skip to main content

Advertisement

Log in

Design and Power Analysis of an Ultra-high Speed Fault-tolerant Full-adder Cell in Quantum-dot Cellular Automata

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The Quantum Cellular Automata (QCA) technology was proposed in response to the limitations of CMOS technology. In addition, the full-adder cell (FAC) is a crucial part of arithmetic computing so that efficient designs can play a significant role. We designed a fault-tolerant FAC implemented on a single-layer, with no rotated or constant cells that significantly improve the design’s manufacturability. Moreover, to further simplify the manufacturing of our proposed circuit, we present a real clocking scheme that clusters the proposed design based on clock regions. Besides, the design can tolerate a single omission fault. As a result, the proposed design shows considerable complexity, area consumption, and energy dissipation improvements by almost 22.7%, 43.75%, and 21% in 1 Ek, respectively. Additionally, the proposed fault-tolerant FAC improves the complexity, area consumption, latency, and total energy dissipation by almost 22.5%, 8%, 33.33%, and 37.74% in 1 Ek compared to the cutting-edge QCA-based single-layer fault-tolerant FAC designs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

Not applicable.

Code Availability

Not applicable.

References

  1. Singh, G., Sarin, R.K., Raj, B.: Design and analysis of area efficient QCA based reversible logic gates. Microprocess. Microsyst. 52, 59–68 (2017)

    Article  Google Scholar 

  2. AlKaldy, E., Majeed, A.H., Bin Zainal, M.S., Md Nor, B.: Optimum multiplexer design in quantum-dot cellular automata. Indones. J. Electr. Eng. Comput. Sci. 17, 148–155 (2020)

    Google Scholar 

  3. Ahmad, F., John, M.U., Khosroshahy, M.B., Sarmadi, S., Bhat, G.M., Peer, Z.A., Wani, S.J.: Performance evaluation of an ultra-high speed adder based on quantum-dot cellular automata. Int. J. Inf. Technol. 11, 467–478 (2019)

    Google Scholar 

  4. Abutaleb, M.: A novel power-efficient high-speed clock management unit using quantum-dot cellular automata. J. Nanopart. Res. 19, 128 (2017)

    Article  ADS  Google Scholar 

  5. Majeed, A.H., Alkaldy, E., bin Zainal, M.S., Nor, B.M.: Synchronous counter design using novel level sensitive T-FF in QCA technology. J. Low Power Electron. Appl. 9, 27 (2019)

    Article  Google Scholar 

  6. Moghaddam, M., Moaiyeri, M.H., Eshghi, M.: Design and evaluation of an efficient Schmitt trigger-based hardened latch in CNTFET technology. IEEE Trans. Device Mater. Reliab. 17, 267–277 (2017)

    Article  Google Scholar 

  7. Kumar, P., Singh, S.: Optimization of the area efficiency and robustness of a QCA-based reversible full adder. J. Comput. Electron. 18, 1478–1489 (2019)

    Article  Google Scholar 

  8. Abdoli, A.: Design flow of digital microfluidic biochips towards improving fault-tolerance, arXiv preprint arXiv:1912.08353, (2019)

  9. Abdoli, A., Jahanian, A.: Fault-tolerant architecture and CAD algorithm for field-programmable pin-constrained digital microfluidic biochips, 2015 CSI Symposium on Real-Time and Embedded Systems and Technologies (RTEST), pp. 1-8. IEEE (2015)

  10. Momenzadeh, M., Huang, J., Tahoori, M.B., Lombardi, F.: Characterization, test, and logic synthesis of and-or-inverter (AOI) gate design for QCA implementation. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 24, 1881–1893 (2005)

    Article  Google Scholar 

  11. Campos, C.A.T., Marciano, A.L., Neto, O.P.V., Torres, F.S.: A universal, scalable, and efficient clocking scheme for QCA. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 35, 513–517 (2015)

    Article  Google Scholar 

  12. Vankamamidi, V., Ottavi, M., Lombardi, F.: Two-dimensional schemes for clocking/timing of QCA circuits. IEEE Trans. Comput. Aided Des. Integr. Circuits Syst. 27, 34–44 (2007)

    Article  Google Scholar 

  13. Torres, F.S., Silva, P.A., Fontes, G., Nacif, J.A., Ferreira, R.S., Neto, O.P.V., Chaves, J., Drechsler, R.: Exploration of the synchronization constraint in quantum-dot cellular automata, 2018 21st Euromicro Conference on Digital System Design (DSD), pp. 642-648. IEEE (2018) 

  14. Liu, W., Lu, L., O’Neill, M., Swartzlander, E.E.: A first step toward cost functions for quantum-dot cellular automata designs. IEEE Trans. Nanotechnol. 13, 476–487 (2014)

    Article  ADS  Google Scholar 

  15. Lent, C.S., Tougaw, P.D.: A device architecture for computing with quantum dots, Proc. IEEE 85, 541-557 (1997)

  16. Dysart, T.J.: Modeling of electrostatic QCA wires. IEEE Trans. Nanotechnol. 12, 553–560 (2013)

    Article  ADS  Google Scholar 

  17. Wang, Y., Lieberman, M.: Thermodynamic behavior of molecular-scale quantum-dot cellular automata (QCA) wires and logic devices. IEEE Trans. Nanotechnol. 3, 368–376 (2004)

    Article  ADS  Google Scholar 

  18. Danehdaran, F., Khosroshahy, M.B., Navi, K., Bagherzadeh, N.: Design and power analysis of new coplanar one-bit full-adder cell in quantum-dot cellular automata. J. Low Power Electron. 14, 38–48 (2018)

    Article  Google Scholar 

  19. Abutaleb, M.: A novel QCA shuffle-exchange network architecture with multicast and broadcast communication capabilities. Microelectron. J. 93, 104640 (2019)

    Article  Google Scholar 

  20. Bagherian khosroshahy, M., Sam Daliri, M., Abdoli, A., Navi, K., Bagherzade, N.: A 3D universal structure based on Molecular-QCA and CNT technologies. J. Mol. Struct. 1119, 86–95 (2016)

    Article  ADS  Google Scholar 

  21. Shin, S.-H., Jeon, J.-C., Yoo, K.-Y.: Wire-crossing technique on quantum-dot cellular automata, NGCIT 2013, the 2nd international conference on next generation computer and information technology, pp. 52-57 (2013)

  22. Momenzadeh, M., Ottavi, M., Lombardi, F.: Modeling QCA defects at molecular-level in combinational circuits, 20th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems (DFT’05), pp. 208-216. IEEE (2005) 

  23. Turvani, G., Riente, F., Cairo, F., Vacca, M., Garlando, U., Zamboni, M., Graziano, M.: Efficient and reliable fault analysis methodology for nanomagnetic circuits. Int. J. Circuit Theory Appl. 45, 660–680 (2017)

    Article  Google Scholar 

  24. Srivastava, S., Sarkar, S., Bhanja, S.: Estimation of upper bound of power dissipation in QCA circuits. IEEE Trans. Nanotechnol. 8, 116–127 (2008)

    Article  ADS  Google Scholar 

  25. Khosroshahy, M.B., Moaiyeri, M.H., Navi, K., Bagherzadeh, N.: An energy and cost efficient majority-based RAM cell in quantum-dot cellular automata. Results Phys. 7, 3543–3551 (2017)

    Article  ADS  Google Scholar 

  26. Farazkish, R.: A new quantum-dot cellular automata fault-tolerant five-input majority gate. J. Nanopart. Res. 16, 2259 (2014)

    Article  ADS  Google Scholar 

  27. Du, H., Lv, H., Zhang, Y., Peng, F., Xie, G.: Design and analysis of new fault-tolerant majority gate for quantum-dot cellular automata. J. Comput. Electron. 15, 1484–1497 (2016)

    Article  Google Scholar 

  28. Goswami, M., Sen, B., Sikdar, B.K.: Design of low power 5-input majority voter in quantum-dot cellular automata with effective error resilience, 2016 Sixth International Symposium on Embedded Computing and Design, S.: (ISED), pp. 101-105. IEEE (2016) 

  29. Sun, M., Lv, H., Zhang, Y., Xie, G.: The fundamental primitives with fault-tolerance in quantum-dot cellular automata. J. Electron. Test. 34, 109–122 (2018)

    Article  Google Scholar 

  30. Moghimizadeh, T., Mosleh, M.: A novel design of fault-tolerant RAM cell in quantum-dot cellular automata with physical verification. J. Supercomput. 75, 5688–5716 (2019)

    Article  Google Scholar 

  31. Singh, G., Raj, B., Sarin, R.K.: Fault-tolerant design and analysis of QCA-based circuits. IET Circuits Devices Syst. 12, 638–644 (2018)

    Article  Google Scholar 

  32. Khosroshahy, M.B., Moaiyeri, M.H., Navi, K.: Design and evaluation of a 5-input majority gate-based content-addressable memory cell in quantum-dot cellular automata, 2017 19th International Symposium on Computer Architecture and Digital Systems (CADS), pp. 1-6. IEEE (2017) 

  33. Bagherian Khosroshahy, M., Abdoli, A., Panahi, M.M.: Novel Feynman-based reversible and fault-tolerant nano-communication arithmetic architecture based on QCA technology. SN Comput. Sci. 2(6), 1–14 (2021)

    Article  Google Scholar 

  34. Deng, F., Xie, G., Cheng, X., Zhang, Z., Zhang, Y.: CFE: a convenient, flexible, and efficient clocking scheme for quantum-dot cellular automata. IET Circuits Devices Syst. 14, 88–92 (2020)

    Article  Google Scholar 

  35. Khosroshahy, M.B., Moaiyeri, M.H., Angizi, S., Bagherzadeh, N., Navi, K.: Quantum-dot cellular automata circuits with reduced external fixed inputs. Microprocess. Microsyst. 50, 154–163 (2017)

    Article  Google Scholar 

  36. Azghadi, M.R., Kavehie, O., Navi, K.: A novel design for quantum-dot cellular automata cells and full adders, arXiv preprint arXiv:1204.2048 (2012)

  37. Danehdaran, F., Angizi, S., Khosroshahy, M.B., Navi, K., Bagherzadeh, N.: A combined three and five inputs majority gate-based high performance coplanar full adder in quantum-dot cellular automata. Int. J. Inf. Technol. 1–13 (2019)

  38. Walus, K., Dysart, T.J., Jullien, G.A., Budiman, R.A.: QCADesigner: A rapid design and simulation tool for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 3, 26–31 (2004)

    Article  ADS  Google Scholar 

  39. Ahmadpour, S.-S., Mosleh, M., Heikalabad, S.R.: An efficient fault-tolerant arithmetic logic unit using a novel fault-tolerant 5-input majority gate in quantum-dot cellular automata. Comput. Electr. Eng. 82, 106548 (2020)

    Article  Google Scholar 

  40. Ahmadpour, S.S., Mosleh, M., Rasouli Heikalabad, S.: Robust QCA full-adders using an efficient fault-tolerant five-input majority gate. Int. J. Circuit Theory Appl. 47, 1037–1056 (2019)

    Article  Google Scholar 

  41. Srivastava, S., Asthana, A., Bhanja, S., Sarkar, S.: QCAPro-an error-power estimation tool for QCA circuit design, 2011 IEEE international symposium of circuits and systems (ISCAS), pp. 2377-2380. IEEE (2011)

Download references

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this manuscript.

Corresponding author

Correspondence to Amir Masoud Rahmani.

Ethics declarations

Conflicts of Interest/Competing Interests

There is no conflict of interest among authors.

Ethics approval

Not applicable.

Consent to Participate

All participants have provided consent to participate.

Consent for Publication

Consent for publication was obtained from all authors.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bagherian Khosroshahy, M., Abdoli, A. & Rahmani, A.M. Design and Power Analysis of an Ultra-high Speed Fault-tolerant Full-adder Cell in Quantum-dot Cellular Automata. Int J Theor Phys 61, 23 (2022). https://doi.org/10.1007/s10773-022-05013-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-05013-0

Keywords

Navigation