Skip to main content
Log in

A new quantum-dot cellular automata fault-tolerant full-adder

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

A novel fault-tolerant full-adder for quantum-dot cellular automata is presented. Quantum-dot cellular automata (QCA) is an emerging technology and a possible alternative for semiconductor transistor based technologies. A novel fault-tolerant full-adder is proposed in this paper: This component is suitable for designing fault-tolerant QCA circuits. The redundant version of full-adder is simple in structure and more robust than the standard style for this device. By considering two-dimensional arrays of QCA cells, fault tolerance properties of such block full-adder can be analyzed in terms of misalignment, missing and dislocation cells. In order to verify the functionality of the proposed device, some physical proofs are provided. The results confirm our claims and its usefulness in designing digital circuits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Oarlov, A.O., Amlani, I., Bernstein, G.H., Lent, C.S., Snider, G.L.: Realization of a functional cell for quantum-dot cellular automata. Science 277, 928–930 (1997)

    Article  Google Scholar 

  2. Tougaw, P.D., Lent, C.S.: Logical devices implemented using quantum cellular automata. J. Appl. Phys. 75, 1818–1825 (1994)

    Article  Google Scholar 

  3. Fijany, A., Toomarian, B.N.: New design for quantum dots cellular automata to obtain fault tolerant logic gates. J. Nanopart. Res. 3, 27–37 (2001)

    Article  Google Scholar 

  4. Azghadi, M.R., Kavehei, O., Navi, K.: A novel design for quantum-dot cellular automata cells and full-adders. J. Appl. Sci. 7, 3460–3468 (2007)

    Article  Google Scholar 

  5. Farazkish, R., Azghadi, M.R., Navi, K., Haghparast, M.: New method for decreasing the number of quantum dot cells in QCA circuits. World Appl. Sci. J. 6, 793–802 (2008)

    Google Scholar 

  6. Farazkish, R., Khodaparast, F., Navi, K., Jalali, A.: Design and characterization of a novel inverter for nanoelectronic circuits. In: International Conference on Nanotechnology: Fundamentals and Applications, vol. 219 (2010)

  7. Farazkish, R., Navi, K.: New efficient five-input majority gate for quantum-dot cellular automata. J. Nanoparticle Res. No. NANO5237 (2012)

  8. Farazkish, R., Sayedsalehi, S., Navi, K.: Novel design for quantum dots cellular automata to obtain fault-tolerant majority gate. J. Nanotechnol. Article ID 943406 2012, doi:10.1155/2012/943406

  9. Farazkish, R.: A new quantum-dot cellular automata fault-tolerant five-input majority gate. J. Nanoparticle Res. 16, 2259 (2014)

    Article  Google Scholar 

  10. Navi, K., Farazkish, R., Sayedsalehi, S., Azghadi, M.R.: A new quantum-dot cellular automata full-adder. Elsevier Microelectron. J. (2010). doi:10.1016/j.mejo.2010.07.003

  11. Navi, K., Moayeri, M., Faghih Mirzaee, R., Hashemipour, O., Mazloom Nezhad, B.: Two new low-power Full-Adders based on majority-not gates. Microelectron. J. 40, 126–130 (2009)

    Article  Google Scholar 

  12. Navi, K., Sayedsalehi, S., Farazkish, R., Azghadi, M.R.: Five-input majority gate a new device for quantum-dot cellular automata. J. Comput. Theor. Nanosci. 7, 1546–1553 (2010)

    Article  Google Scholar 

  13. Zhang, R., Walnut, K., Wang, W., Jullien, G.A.: A method of majority logic reduction for quantum cellular automata. IEEE Trans. Nanotechnol. 3, 443–450 (2004)

    Article  Google Scholar 

  14. Zhi, H., Zhang, Q., Haruehanroengra, S., Wang, W.: Logic optimization for majority gate based nanoelectronic circuits. In: International Symposium on Circuits and Systems ISCAS, pp. 1307–1310 (2006)

  15. Cho, H., Swartzlander, E.E.: Adder designs and analyses for quantum-dot cellular automata. IEEE Trans. Nanotechnol. 6, 374–384 (2007)

  16. Cho, H., Swartzlander, E.E.: Adder and multiplier design in quantum-dot cellular automata. IEEE Trans. Comput. 58, 721–727 (2009)

    Article  MathSciNet  Google Scholar 

  17. Wang, W., Walus, K., Jullien, G.A.: Quantum-dot cellular automata adders. In: Proceeding of the IEEE Conference on Nanotechnology (2003)

  18. Armstrong, C.D., Humphreys, W.M.: The development of design tools for fault tolerant quantum dot cellular automata based logic. In: 2nd Int’l Workshop on Quantum Dots for Quantum Computing and Classical Size Effect Circuits (2003)

  19. Armstrong, C.D., Humphreys, W.M., Fijany, A.: The design of fault tolerant quantum dot cellular automata based logic. In: 11th NASA Symposium on VLSI Design (2003)

  20. Beard, M.J.: Design and simulation of fault-tolerant Quantum-dot Cellular Automata (QCA) NOT gates. M.S. Thesis in Wichita State University (2006)

  21. Dalui, M., Sen, B., Sikdar, B.K.: Fault tolerant QCA logic design with coupled majority-minority gate. Int. J. Comput. Appl. 1(29), 81–87 (2010)

    Google Scholar 

  22. Sen, B., Ganeriwal, S., Sikdar, B.K.: Reversible Logic-Based Fault-Tolerant Nanocircuits in QCA, ISRN Electronics Article ID 850267 (2013)

  23. Tahoori, M.B., Momenzadeh, M., Huang, J., Lombardi, F.: Defects and faults in quantum cellular automata at nanoscale. IEEE VLSI Test Symposium, vol. 4 (2004)

  24. Lent, C.S., Tougaw, P.D.: Lines of interacting quantum-dot cells: a binary wire. J. Appl. Phys. 74(10), 6227–6233 (1993)

  25. Huang, J., Momenzadeh, M., Tahoori, M.B., Lombardi, F.: Design and characterization of an and-or-inverter (AOI) gate for QCA implementation. GLSVLSI 9, 26–28 (2004)

    Google Scholar 

  26. Lent, C.S., Tougaw, P.D.: Dynamic behavior of quantum cellular automata. J. Appl. Phys. 80(8), 4722–4736 (1996)

    Article  Google Scholar 

  27. Lent, C.S., Isaksen, B., Lieberman, M.: Molecular quantum-dot cellular automata. J. Am. Chem. Soc. 125, 1056–1063 (2003)

    Article  Google Scholar 

  28. Awais, M., Vacca, M., Graziano, M., Ruo Roch, M., Masera, G.: Quantum dot cellular automata check node implementation for LDPC decoders. IEEE Trans. Nanotechnol. 12, 368–377 (2013)

    Article  Google Scholar 

  29. Dajani, O.: Emerging design methodology and its implementation through RNS and QCA, Wayne State University Dissertations, Paper 646 (2013)

  30. Pulimeno, A., Graziano, M., Demarchi, D., Piccinini, G.: Towards a molecular QCA wire: simulation of write-in and read-out systems. Solid State Electron. 77, 101–107 (2012)

    Article  Google Scholar 

  31. Huang, J., Lombardi, F.: Design and test of digital circuits by quantum-dot cellular automata. Northeastern University (2007)

  32. Lu, Y., Lent, C.S.: Theoretical study of molecular quantum dot cellular automata. In: IEEE International Workshop on Computational Electronics, pp. 118–119 (2004)

  33. Halliday, D., Resnick, A.: Fundamentals of Physics, 7th edn. Wiley, New York (2004). Part 1 (Chapters 3–6)

    Google Scholar 

Download references

Acknowledgments

The author would like to thank Dr. Keivan Navi, for his kind guidance and effort throughout this research; and would also like to thank the members of research committee of Islamic Azad University, South Tehran Branch. This research has been done in “Design of fault-tolerant nanoelectronic devices and circuits using quantum cellular automata” research project and supported by Islamic Azad University, South Tehran Branch.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Razieh Farazkish.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Farazkish, R. A new quantum-dot cellular automata fault-tolerant full-adder. J Comput Electron 14, 506–514 (2015). https://doi.org/10.1007/s10825-015-0668-2

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-015-0668-2

Keywords

Navigation