Skip to main content
Log in

Multi-Party Quantum Key Agreement Protocol Based on G-Like States and χ+ States

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Quantum Key Agreement (QKA) is an important branch of quantum cryptography, which uses the characteristics of quantum entanglement to ensure security of the key. The multi-party quantum key agreement requires all communicants to exert the same influence on the result of the protocol, and the key cannot be determined individually. Most of the MQKA protocols that have been proposed are based on a single particle or Bell state, where each particle corresponds to only one classical bit. This paper proposes a multi-party QKA protocol based on the GHZ-like state and χ+ state, which can realize that each particle corresponds to 1.5 classical bits. The security of the protocol is guaranteed by the uncertainty of the measurement results of entanglement swapping. The results show that the proposed multi-party QKA protocol is secure, fair, and efficient, which can be implemented with existing physical technology. In addition, it is simpler and less computational in the proposed MQKA protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661–663 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  2. Bennett, C.H.: Quantum cryptography using any two nonorthogonal states. Phys. Rev. Lett. 68, 3121–3124 (1992)

    Article  MathSciNet  ADS  Google Scholar 

  3. He, Y.F., Ma, W.P.: Quantum key agreement protocols with four-qubit cluster states. Quantum Inf.Process. 14(9), 3483–3498 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  4. He, Y.F., Ma, W.P.: Two-party quantum key agreement against collective noise. Quantum Inf. Process. 15(12), 5023–5035 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  5. Zhou, Y.H., Tan, J., Zhang, J., Shi, W.M., Yang, Y.G.: Three-Party Quantum Key Agreement Protocol Based on Continuous Variable Single-Mode Squeezed States. Commun. Theor. Phys. 71(12), 1448–1454 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  6. Zhu, Z.C., Hu, A.Q., Fu, A.M.: Improving the security of protocols of quantum key agreement solely using bell states and bell measurement. Quantum Inf. Process. 14(11), 4245–4254 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  7. Curty, M., Santos, D.J.: Quantum authentication of classical messages [J]. Phys. Rev. A. 64(6), 062309 (2001)

    Article  ADS  Google Scholar 

  8. Zhou, N., Wang, L., Gong, L., Zuo, X., Liu, Y .: Quantum deterministic key distribution protocols based on teleportation and entanglement swapping [J]. Opt. Commun. 284(19), 4836–4842 (2011)

  9. Wang, L., Zhao, S.: Round-robin differential-phase-shift quantum key distribution with heralded pair-coherent sources. Quantum Inf. Process. 16(4), 100–115 (2017)

    Article  ADS  Google Scholar 

  10. Gao, F., Qin, S.J., Guo, F.Z., et al.: Dense-coding attack on three-party quantum key distribution protocols. IEEE J. Quantum Electron. 47(5), 630–635 (2011)

    Article  ADS  Google Scholar 

  11. Gao, F., Guo, F.Z., Wen, Q.Y., et al.: Quantum key distribution by constructing nonorthogonal states with bell states. Int. J. Mod. Phys. B. 24(23), 4611–4618 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  12. Zhao, Z.W., Luo, Y., Zhao, Z.J., Long, H.M.: A secure quantum key distribution scheme based on variable quantum encoding algorithms. Chin. Opt. Lett. 9(3), 032702–032704 (2011)

    Article  ADS  Google Scholar 

  13. Gao, F., Qin, S.J., Wen, Q.Y., Zhu, F.C.: Cryptanalysis of multiparty controlled quantum secure direct communication using Greenberger–Horne–Zeilinger state. Opt. Commun. 283(1), 192–195 (2010)

    Article  ADS  Google Scholar 

  14. Chang, Y., Xu, C.X., Zhang, S.B., Yan, L.L.: Quantum secure direct communication and authentication protocol with single photons [J]. Chin. Sci. Bull. 58(36), 4571–4576 (2013)

    Article  Google Scholar 

  15. Zhang, M., Li, H.: Weak blind quantum signature protocol based on entanglement swapping. Photonics Res. 3(6), 324–328 (2015)

    Article  Google Scholar 

  16. Zhou, N., Zeng, G., Xiong, J.: Quantum key agreement protocol. Electron. Lett. 40(18), 1149–1150 (2004)

    Article  ADS  Google Scholar 

  17. Hsueh, C.C., Chen, C.Y .: Quantum key agreement protocol with maximally entangled states [C].Proceedings of the 14th information security conference,T aipei, 236–242 (2004)

  18. Tsai, C.W., Hwang, T.: On Quantum Key Agreement Protocol. Technical Report C-S-I-E, NCKU, Taiwan (2009)

    Google Scholar 

  19. Chong, S.K., Hwang, T.: Quantum key agreement protocol based on BB84. Opt. Commun. 283, 1192–1195 (2010)

    Article  ADS  Google Scholar 

  20. Shi, R.H., Zhong, H.: Multi-party quantum key agreement with bell states and bell measurements. Quantum Inf Process. 12, 921–932 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  21. Liu, B., Gao, F., Huang, W., Wen, Q.-Y.: Multiparty quantum key agreement with single particles. Quantum Inf. Process. 12, 1797–1805 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  22. Sun, Z., Zhang, C., Wang, B., Li, Q., Long, D.: Improvements on multiparty quantum key agreement with single particles. Quantum Inf. Process. 12, 3411–3420 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  23. Wang, P ., Sun, Z.W., Sun, X.Q.: Multi-party quantum key agreement protocol secure against collusion attacks. Quantum Inf. Process 16, 170–180 (2017)

  24. Min, S.Q., Chen, H.Y., Gong, L.H.: Novel Multi-Party Quantum Key Agreement Protocol with G-Like States and Bell States. Int. J. Theor. Phys. 57(6), 1811–1822 (2018)

    Article  MathSciNet  Google Scholar 

  25. Z. Zhao, T. Yang, Z.-B. Chen, J. Du, and J.-W. Pan.: Deterministic and Highly Efficient Quantum Cryptography with Entangled Photon Pairs. arXiv:quant-ph/0211098 (2002)

  26. Cabellon, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5635–5638 (2000)

    Article  ADS  Google Scholar 

  27. Deng, F.G., Long, G.L., Wang, Y., Xiao, L.: Increasing the efficiencies of random-choice-based quantum communication protocols with delayed measurement. Chin. Phys. Lett. 21, 2097–2100 (2004)

    Article  ADS  Google Scholar 

  28. Liu, B., Xiao, D., Jia, H.Y ., Liu, R.Z.: Collusive attacks to “circle-type” multi-party quantum key agreement protocols. Quantum Inf. Process 15, 2113–2124 (2016)

  29. Lin, J., Hwang, T.: New circular quantum secret sharing for remote agents. Quantum Inf. Process. 12, 685–697 (2013)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China under Grant No. 6217070290 and Shanghai Science and Technology Project in 2020 under Grant No.20040501500.

Author information

Authors and Affiliations

Authors

Contributions

Hang Gao and Ri-Gui Zhou conceived the theory and designed the protocol. Xiaoxue Zhang wrote the paper and contributed security analysis.

Corresponding author

Correspondence to Ri-Gui Zhou.

Ethics declarations

Conflict of Interest

The authors declare that there is no conflict of interest.

Code Availability

Not applicable.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gao, H., Zhou, RG. Multi-Party Quantum Key Agreement Protocol Based on G-Like States and χ+ States. Int J Theor Phys 61, 16 (2022). https://doi.org/10.1007/s10773-022-05011-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-05011-2

Keywords

Navigation