Skip to main content
Log in

Fault-tolerant Quantum Private Comparison Protocol

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

A Correction to this article was published on 25 March 2022

This article has been updated

Abstract

A quantum private comparison(QPC) protocol is proposed, in which the single photons are uesed as quantum resources and the private information of each participant is independently encoded on the global phase of the particle sequence. Compared with QPC protocols based on entangled states or high-dimensional quantum states, the protocols using single photons have the advantages of low cost and easy implementation, but the impact of noise on private comparison is a challenge. Aiming at the extreme sensitivity of information equality comparison to noise, analyze the influence of noise on the output of the parallel beam splitter, the classical linear block code are used to constructed the error correction code of this protocol, to achieve higher encoding efficiency than quantum error correction code and correct single-bit error in quantum transmission. Security analysis demonstrates that this protocol can resist various typical attacks from inside or outside.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Change history

References

  1. Yao, A.C.: Protocols for secure computations. In: Proceeding of 23Rd IEEE Symposium on Foundations of Computer Science, pp. 160–164 (1982)

  2. Yang, Y.G., Wen, Q.Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement. J. Phys. A Math. Theor. 42, 055305 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  3. Chen, X.B., Xu, G., Niu, X.X., Wen, Q.Y., Yang, Y.X.: An efficient protocol for the private comparison of equal information based on the triplet entangled state and single-particle measurement. Opt. Commun. 283(7), 1561–1565 (2010)

    Article  ADS  Google Scholar 

  4. Tseng, H.Y., Lin, J., Hwang, T.: New quantum private comparison protocol using epr pairs. Quantum Inf. Process. 11, 373–384 (2012)

    Article  MathSciNet  Google Scholar 

  5. Liu, W., Wang, Y.B., Jiang, Z.T.: An efficient protocol for the quantum private comparison of equality with w state. Opt. Commun. 284(12), 3160–3163 (2011)

    Article  ADS  Google Scholar 

  6. Liu, W., Wang, Y.B., Jiang, Z.T., Cao, Y.Z.: A protocol for the quantum private comparison of equality with χ-type state. Int. J. Theor. Phys. 51(1), 69–77 (2012)

    Article  MathSciNet  Google Scholar 

  7. Liu, W., Wang, Y.B., Wang, X.M.: Multi-party quantum private comparison protocol using d-dimensional basis states without entanglement swapping. Int. J. Theor. Phys. 53(4), 1085–1091 (2014)

    Article  MathSciNet  Google Scholar 

  8. Lin, S., Sun, Y., Liu, X.F., Yao, Z.Q.: Quantum private comparison protocol with d-dimensional bell states. Quantum Inf. Process. 12(1), 559–568 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  9. Huang, S.L., Hwang, T., Gope, P.: Multi-party quantum private comparison protocol with an almost-dishonest third party using ghz states. Int. J. Theor. Phys. 55(6), 2969–2976 (2016)

    Article  Google Scholar 

  10. Hung, S.M., Hwang, S.L., Hwang, T., Kao, S.H.: Multiparty quantum private comparison with almost dishonest third parties for strangers. Quantum Inf. Process. 16(2), 36 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  11. Ye, T.Y., Ji, Z.X.: Multi-user quantum private comparison with scattered preparation and one-way convergent transmission of quantum states. Sci. China Phys. Mech. Astron. 60(9), 090312 (2017)

    Article  ADS  Google Scholar 

  12. Cao, H., Ma, W., Lyu, L., He, Y., Liu, G.: Multi-party quantum privacy comparison of size based on d-level ghz states. Quantum Inf. Process. 18 (9), 287 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  13. Pan, H.M.: Quantum private comparison based on χ-type entangled states. Int. J. Theor. Phys. 56(10), 3340–3347 (2017)

    Article  MathSciNet  Google Scholar 

  14. Ye, T.Y., Ji, Z.X.: Two-party quantum private comparison with five-qubit entangled states. Int. J. Theor. Phys. 56(5), 1517–1529 (2017)

    Article  MathSciNet  Google Scholar 

  15. Zha, X.W., Yu, X.Y., Cao, Y., Wang, S.K.: Quantum private comparison protocol with five-particle cluster states. Int. J. Theor. Phys. 57, 3874–3881 (2018)

    Article  Google Scholar 

  16. Li, C.Y., Chen, X.B., Li, H.J., Yang, Y.G., Li, J.: Efficient quantum private comparison protocol based on the entanglement swapping between four-qubit cluster state and extended bell state. Quantum Inf. Process 18, 158 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  17. Xu, Q.D., Chen, H.Y., Gong, L.H., Zhou, N.R.: Quantum private comparison protocol based on four-particle ghz states. Int. J. Theor. Phys. 59(6), 1798–1806 (2020)

    Article  MathSciNet  Google Scholar 

  18. Wu, W.Q., Zhao, Y.X.: Quantum private comparison of size using d-level bell states with a semi-honest third party. Quantum Inf. Process. 20(4), 155 (2021)

    Article  ADS  MathSciNet  Google Scholar 

  19. Yang, Y.G., Xia, J., Jia, X., Shi, L., Zhang, H.: New quantum private comparison protocol without entanglement. Int. J. Quantum Inf. 10(6), 1250065 (2012)

    Article  MathSciNet  Google Scholar 

  20. Liu, B., Gao, F., Jia, H.Y., Huang, W., Zhang, W.W., Wen, Q.Y.: Efficient quantum private comparison employing single photons and collective detection. Quantum Inf. Process. 12(2), 887–897 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  21. Liu, X.T., Zhang, B., Wang, J., Tang, C.J., Zhao, J.J.: Differential phase shift quantum private comparison. Quantum Inf. Process. 13(1), 71–84 (2014)

    Article  ADS  Google Scholar 

  22. Li, Y.B., Ma, Y.J., Xu, S.W., Huang, W., Zhang, Y.S.: Quantum private comparison based on phase encoding of single photons. Int. J. Theor. Phys. 53(9), 3191–3200 (2014)

    Article  Google Scholar 

  23. Lin, P.H., Hwang, T., Tsai, C.W.: Efficient semi-quantum private comparison using single photons. Quantum Inf. Process. 18(7), 207 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  24. Andersson, E., Curty, M., Jex, I.: Experimentally realizable quantum comparison of coherent states and its applications. Phys. Rev. A 74(2), 022304 (2006)

    Article  ADS  Google Scholar 

  25. Kok, P., Nemoto, K., Ralph, T.C., Dowling, J.P., Milburn, G.J.: Linear optical quantum computing with photonic qubits. Rev. Mod. Phys. 79(1), 135–135 (2007)

    Article  ADS  Google Scholar 

  26. Macwilliams, F.J., Sloane, N.: The theory of Error-Correcting codes. The Nethertands, North-Holland (1977)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to ChunAn Ma.

Ethics declarations

Consent for Publication

Informed consent for publication was obtained from all participants.

Additional information

Availability of data and material

All data generated or analysed during this study are included in this published article.

Consent to participate

All the authors listed have approved the manuscript that is enclosed.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, M., Ma, C. Fault-tolerant Quantum Private Comparison Protocol. Int J Theor Phys 61, 41 (2022). https://doi.org/10.1007/s10773-022-05008-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-05008-x

Keywords

Navigation