Skip to main content
Log in

Quantum Watermarking Algorithm Based on Quantum Haar Wavelet Transform and Henon Map

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In quantum wavelet transform, the pixel values of an image may appear signed decimal instead of integer. Consequently, a generalized representation to signed decimal is presented to carry the data type of pixels in a quantum image. Subsequently, common quantum modules including addition, subtraction, multiplication and division arithmetic units based on the generalized representation to signed decimal are designed to implement quantum Haar wavelet transform. The proposed quantum Haar wavelet transform strategy is more efficient than the classical Haar wavelet transform method. To avoid the periodicity of the quantum Arnold scrambling algorithm, a new quantum scrambling mechanism based on the Henon map is presented. Experimental results indicate that the proposed quantum watermarking algorithm has good performance in security and invisibility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22
Fig. 23
Fig. 24
Fig. 25

Similar content being viewed by others

References

  1. Feynman, RP: Simulating physics with computers. Int. J. Theor. Phys. 21(6-7), 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  2. Bennett, CH, Divincenzo, DP: Quantum information and computation. Nature 404(6775), 247–255 (2000)

    Article  ADS  Google Scholar 

  3. Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quantum Inf. Process. 10(1), 63–84 (2011)

  4. Zhang, Y., Lu, K., Gao, Y., Wang, M.: NEQR: a novel enhanced quantum representation of digital images. Quantum Inf. Process. 12(8), 2833–2860 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  5. Jiang, N., Wang, L.: Quantum image scaling using nearest neighbor interpolation. Quantum Inf. Process. 14(5), 1559–1571 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  6. Jiang, N., Wang, J., Mu, Y.: Quantum image scaling up based on nearest-neighbor interpolation with integer scaling ratio. Quantum Inf. Process. 14(11), 4001–4026 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  7. Le, P.Q., Iliyasu, A.M., Dong, F., Hirota, K.: Fast geometric transformations on quantum images. Int. J. Appl. Math. 40(3), 113–123 (2010)

  8. Zhang, Y., Lu, K., Gao, Y.: QSobel: a novel quantum image edge extraction algorithm. Sci. Chin.-Inf. Sci. 58(012106) (2015)

  9. Yu, S.-S., Zhou, N.-R., Gong, L.-H., Nie, Z.: Optical image encryption algorithm based on phase-truncated short-time fractional Fourier transform and hyper-chaotic system. Optics Lasers Eng. 124(105816) (2020)

  10. Huang, Z.-J., Cheng, S., Gong, L.-H., Zhou, N.-R.: Nonlinear optical multi-image encryption scheme with two-dimensional linear canonical transform. Optics Lasers Eng. 124(105821) (2020)

  11. XiaoJun, T., MingGen, C.: Feedback image encryption algorithm with compound chaotic stream cipher based on perturbation. Sci. Chin.-Inf. Sci. 53(1), 191–202 (2010)

    Article  MathSciNet  Google Scholar 

  12. Yan, F., Iliyasu, A.M., Le, P.Q.: Quantum image processing: a review of advances in its security technologies. International Journal of Quantum Information 15(03) (2017)

  13. Gong, L.-H., He, X.-T., Cheng, S., Hua, T.-X., Zhou, N.-R.: Quantum image encryption algorithm based on quantum image XOR Operations. Int. J. Theor. Phys. 55(7), 3234–3250 (2016)

    Article  MathSciNet  Google Scholar 

  14. Ye, G., Huang, X.: Spatial image encryption algorithm based on chaotic map and pixel frequency. Sci. Chin.-Inf. Sci. 61(5) (2018)

  15. Zhou, R.-G., Wu, Q., Zhang, M.-Q., Shen, C.-Y.: Quantum image encryption and decryption algorithms based on quantum image geometric transformations. Int. J. Theor. Phys. 52(6), 1802–1817 (2013)

    Article  MathSciNet  Google Scholar 

  16. Barr, M., Serdean, C.: Wavelet transform modulus maxima-based robust logo watermarking. Iet Image Processing 14(4), 697–708 (2020)

    Article  Google Scholar 

  17. Luo, A.-W., Gong, L.-H., Zhou, N.-R., Zou, W.-P.: Adaptive and blind watermarking scheme based on optimal SVD blocks selection. Multimed Tools Appl 79(1-2), 243–261 (2020)

    Article  Google Scholar 

  18. Lai, H., Luo, M., Pieprzyk, J., Qu, Z., Li, S., Orgun, M.A.: An efficient quantum blind digital signature scheme. Sci. Chin.-Inf. Sci. 60(8) (2017)

  19. Song, X., Wang, S., Abd El-Latif, A.A., Niu, X.: Dynamic watermarking scheme for quantum images based on Hadamard transform. Multimedia Systems 20(4), 379–388 (2014)

    Article  Google Scholar 

  20. Jiang, N., Zhao, N., Wang, L.: LSB based quantum image steganography algorithm. Int. J. Theor. Phys. 55(1), 107–123 (2016)

    Article  Google Scholar 

  21. Heidari, S., Naseri, M.: A novel LSB based quantum watermarking. Int. J. Theor. Phys. 55(10), 4205–4218 (2016)

    Article  Google Scholar 

  22. Wei, Z.-H., Chen, X.-B., Xu, S.-J., Niu, X.-X., Yang, Y.-X.: A spatial domain quantum watermarking scheme. Commun. Theor. Phys. 66(1), 66–76 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  23. Miyake, S., Nakamae, K.: A quantum watermarking scheme using simple and small-scale quantum circuits. Quantum Inf. Process. 15(5), 1849–1864 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  24. Jiang, N., Wu, W.-Y., Wang, L.: The quantum realization of Arnold and Fibonacci image scrambling. Quantum Inf. Process.

  25. Zhu, H.-H., Chen, X.-B., Yang, Y.-X.: A quantum image dual-scrambling encryption scheme based on random permutation. Sci. Chin.-Inf. Sci. 62(12) (2019)

  26. Yan, F., Iliyasu, A.M., Sun, B., Venegas-Andraca, S.E., Dong, F., Hirota, K.: A duple watermarking strategy for multi-channel quantum images. Quantum Inf. Process. 14(5), 1675–1692 (2015)

    Article  MathSciNet  ADS  Google Scholar 

  27. Zhang, W.-W., Gao, F., Liu, B., Wen, Q.-Y., Chen, H.: A watermark strategy for quantum images based on quantum fourier transform. Quantum Inf. Process. 12(2), 793–803 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  28. Song, X.-H., Wang, S., Liu, S., Abd El-Latif, A.A., Niu, X.-M.: A dynamic watermarking scheme for quantum images using quantum wavelet transform. Quantum Inf. Process. 12(12), 3689–3706 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  29. Wang, S., Song, X., Niu, X.: Quantum cosine transform based watermarking scheme for quantum images. Chin. J. Electron. 24(2), 321–325 (2015)

    Article  Google Scholar 

  30. Li, H.-S., Fan, P., Xia, H.-Y., Song, S.: Quantum multi-level wavelet transforms. Inf. Sci. 504, 113–135 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  31. Luo, G., Zhou, R.-G., Luo, J., Hu, W., Zhou, Y., Ian, H.: Adaptive LSB quantum watermarking method using tri-way pixel value differencing. Quantum Inf. Process. 18(2) (2019)

  32. Nejad, M.Y., Mosleh, M., Heikalabad, S.R.: A blind quantum audio watermarking based on quantum discrete cosine transform. J. Inf. Secur. Appl. 55(102495) (2020)

  33. Barenco, A., Bennett, C., Cleve, R., Divincenzo, D., Margolus, N., Shor, P., Sleator, T., Smolin, J., Weinfurter, H.: Elementary gates for quantum computation. Phys. Rev. A 52(5), 3457–3467 (1995)

    Article  ADS  Google Scholar 

  34. Le, S-Z: Design of quantum comparator based on extended general toffoli gates with multiple targets. Comput. Sci. 39(9), 302–306 (2012)

  35. Zhou, R.-G., Hu, W., Fan, P.: Quantum watermarking scheme through Arnold scrambling and LSB steganography. Quantum Inf. Process. 16(9) (2017)

  36. Vedral, V., Barenco, A., Ekert, A.: Quantum networks for elementary arithmetic operations. Phys. Rev. A 54(1), 147–153 (1996)

    Article  MathSciNet  ADS  Google Scholar 

  37. Kotiyal, S., Thapliyal, H., Ranganathan, N.: Circuit for reversible quantum multiplier based on binary tree optimizing ancilla and garbage bits. International Conference on VLSI Design, pp. 545–550 (2014)

  38. Khosropour, A., Aghababa, H., Forouzandeh, B.: Quantum division circuit based on restoring division algorithm. In: Eighth International Conference on Information Technology: New Generations, pp. 1037–1040 (2011)

  39. Zhou, R.-G., Hu, W., Fan, P., Ian, H.: Quantum realization of the bilinear interpolation method for NEQR. Sci. Rep. 7(2511) (2017)

  40. Xu, X., Xiao : Application of dichotomy in decomposition of multi-line quantum logic gate. Journal of Southeast University (Natural Science Edition) 40 (5), 928–931 (2010)

    MathSciNet  MATH  Google Scholar 

  41. Zhou, R., Hu, W., Luo, G., Liu, X., Fan, P.: Quantum realization of the nearest neighbor value interpolation method for INEQR. Quantum Inf. Process. 17(7) (2018)

Download references

Funding

This work is supported by the National Natural Science Foundation of China (Grant Nos. 61462061 and 61861029).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weiping Zou.

Ethics declarations

Conflict of Interests

The authors declare that they have no conflicts of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zeng, Q., Ge, H., Fu, J. et al. Quantum Watermarking Algorithm Based on Quantum Haar Wavelet Transform and Henon Map. Int J Theor Phys 61, 167 (2022). https://doi.org/10.1007/s10773-022-04998-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-04998-y

Keywords

Navigation