Skip to main content
Log in

Multi-party Quantum Key Agreement Protocol with Authentication

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Utilizing the advantage of quantum entanglement swapping, a multi-party quantum key agreement protocol with authentication is proposed. In this protocol, a semi-trusted third party is introduced, who prepares Bell states, and sends one particle to multiple participants respectively. After that the participants can share a Greenberger-Horne-Zeilinger state by entanglement swapping. Finally, these participants measure the particles in their hands and obtain an agreement key. Here, classical hash function and Hadamard operation are utilized to authenticate the identity of participants. The correlations of GHZ states ensure the security of the proposed protocol. To illustrated it detailly, the security of this protocol against common attacks is analyzed, which shows that the proposed protocol is secure in theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G.: Quantum cryptography: public-key distribution and coin tossing[C]. In: Proceedings of IEEE International Conference on Computers, Systems and Signal Processing, pp. 175–179 (1984)

  2. Ekert, A.K.: Quantum cryptography based on Bell’s theorem[J]. Phys. Rev. Lett. 67, 661 (1991)

    Article  MathSciNet  ADS  Google Scholar 

  3. Lo, H.K., Curty, M., Qi, B.: Measurement-device-independent quantum key distribution[J]. Phys. Rev. Lett. 108, 130503 (2012)

    Article  ADS  Google Scholar 

  4. Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret[J]. Phys. Rev. Lett. 83, 648–651 (1999)

    Article  ADS  Google Scholar 

  5. Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting[J]. Phys. Rev. A 59, 162–168 (1999)

    Article  ADS  Google Scholar 

  6. Hsu, L.Y.: Quantum secret-sharing protocol based on Grover’s algorithm[J]. Phys. Rev. A 68, 022306 (2003)

    Article  ADS  Google Scholar 

  7. Liu, W., Wang, Y.B., Cui, W.: Quantum private comparison protocol based on Bell entangled states[J]. Commun. Theor. Phys. 57, 583–588 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  8. Huang, W., Wen, Q.Y., Liu, B., et al.: Robust and efficient quantum private comparison of equality with collective detection over collective-noise channels[J]. Sci. China(Phys. Mech. Astronomy) 56, 1670–1678 (2013)

    Article  ADS  Google Scholar 

  9. Liu, W.J., Liu, C., Chen, H.W., et al.: An efficient protocol for the quantum private comparison of equality with W state[J]. Int. J. Quantum Inf. 12, 1450001 (2014)

    Article  MathSciNet  Google Scholar 

  10. Yang, G., Wen, Y.: An efficient two-party quantum private comparison protocol with decoy photons and two-photon entanglement.[J]. J. Phys. A Math. Theor. (2009)

  11. Lin, S., Wen, Q.Y., Gao, F., et al.: Quantum secure direct communication with x-type entangled states[J]. Phys. Rev. A 78, 064304 (2008)

    Article  ADS  Google Scholar 

  12. Wang, C., Deng, F.G., Long, G.L.: Multi-step quantum secure direct communication using multi-particle Green-Horne-Zeilinger state[J]. Optics Commun. 253, 15–20 (2005)

    Article  ADS  Google Scholar 

  13. Wang, C., Deng, F.G., Li, Y.S., et al.: Quantum secure direct communication with high-dimension quantum superdense coding[J]. Phys. Rev. A 71, 44305 (2005)

    Article  ADS  Google Scholar 

  14. Wang, S.A., Lu, C.Y.: Quantum secure direct communication network[J]. IEEE 752–755 (2013)

  15. Deng, F.G., Li, X.H., Li, C.Y., et al.: Quantum secure direct communication network with Einstein-Podolsky-Rosen pairs[J]. Phys. Lett. A 359, 359–365 (2016)

    Article  ADS  Google Scholar 

  16. Zhou, N., Zeng, G., Xiong, J.: Quantum key agreement protocol[J]. Electron. Lett. 40(18), 1149–1150 (2004)

    Article  ADS  Google Scholar 

  17. Shi, R.H., Zhong, H.: Multi-party quantum key agreement with Bell states and Bell measurements[J]. Quantum Inf. Process 12, 921–932 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  18. Liu, B., Gao, F., Huang, W., et al.: Multiparty quantum key agreement with single particles[J]. Quantum Inf. Process 12, 1797–1805 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  19. Sun, Z.W., Zhang, C., Wang, B.H., et al.: Improvements on ‘Multiparty quantum key agreement with single particles’[J]. Quantum Inf. Process 12, 3411–3420 (2013)

    Article  MathSciNet  ADS  Google Scholar 

  20. Huang, W., Wen, Q.Y., Liu, B., et al.: Cryptanalysis of a multi-party quantum key agreement protocol with single particles[J]. Quantum Inf. Process 13, 1651–1657 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  21. Xu, G.B., Wen, Q.Y., Gao, F., et al.: Novel multiparty quantum key agreement protocol with GHZ states[J]. Quantum Inf. Process 13, 2587–2594 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  22. Shukla, C., Alam, N., Pathak, A.: Protocols of quantum key agreement solely using Bell states and Bell measurement[J]. Quantum Inf. Process 13, 2391–2405 (2014)

    Article  MathSciNet  ADS  Google Scholar 

  23. He, Y.F., Ma, W.P.: Two-party quantum key agreement based on four-particle GHZ states[J]. Int. J. Quantum Inf. 14, 1650007 (2016)

    Article  MathSciNet  Google Scholar 

  24. Sun, Z.W., Zhang, C., Wang, P., et al: Multi-party quantum key agreement by an entangled six-qubit state[J]. Int. J. Theor. Phys. 55, 1920–1929 (2016)

    Article  Google Scholar 

  25. Liu, B., Xiao, D., Jia, H.Y., et al.: Collusive attacks to ‘circle-type’ multi-party quantum key agreement protocols[J]. Quantum Inf. Process 15, 2113–2124 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  26. Cao, H., Ma, W.P.: Multiparty quantum key agreement based on quantum search algorithm[J]. Sci. Rep. 7, 45046 (2017)

    Article  ADS  Google Scholar 

  27. Cao, H., Ma, W.P.: Multi-party traveling-mode quantum key agreement protocols immune to collusive attack[J]. Quantum Inf. Process 17, 219 (2018)

    Article  MathSciNet  ADS  Google Scholar 

  28. Huang, W.C., Yang, Y.K., Jiang, D., et al.: Efficient travelling-mode quantum key agreement against participant’s attacks[J]. Sci. Rep. 9, 16421 (2019)

    Article  ADS  Google Scholar 

  29. Sun, Z.W., Wu, C.H., Zheng, S.G., et al.: Efficient multiparty quantum key agreement with a single d-level quantum system secure against collusive attack[J]. IEEE Access 7, 102377–102385 (2019)

    Article  Google Scholar 

  30. Abulkasim, H., Mashatan, A., Ghose, S.: Secure multiparty quantum key agreement against collusive attacks. Sci. Rep. 11, 9456 (2021)

    Article  ADS  Google Scholar 

  31. Pieprzyk, J, Hardjono, T, Seberry, J.: Key establishment protocols[M]. Springer, Berlin (2003)

    Book  Google Scholar 

  32. Lee, H., Lim, J., Yang, H.: Quantum direct communication with authentication[J]. Phys. Rev. A 73, 042305 (2005)

    Article  ADS  Google Scholar 

  33. Lin, S., Wang, H., Guo, G.D., et al.: Authenticated multi-user quantum key distribution with single particles[J]. Int. J. Quantum Inform. 14, 1650002 (2016)

    Article  MathSciNet  ADS  Google Scholar 

  34. Sun, Y., Du, J.Z., Qin, S.J., et al.: Quantum secret sharing with bidirectional authentication[J]. Acta Phys. Sin. 57, 46894694 (2008)

    MathSciNet  Google Scholar 

  35. Xu, G., Jiang, D.: Novel methods to construct nonlocal sets of orthogonal product states in an arbitrary bipartite high-dimensional system[J]?. Quantum Inform. Proc. 20, 128 (2021)

    Article  MathSciNet  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grants No. 61772134 and No. 61976053), Fujian Province Natural Science Foundation (Grant No. 2018J01776), and Program for New Century Excellent Talents in Fujian Province University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Song Lin.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, YT., Chang, H., Guo, GD. et al. Multi-party Quantum Key Agreement Protocol with Authentication. Int J Theor Phys 60, 4066–4077 (2021). https://doi.org/10.1007/s10773-021-04954-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-021-04954-2

Keywords

Navigation