Skip to main content
Log in

High-efficient Quantum Key Agreement Protocol with Entanglement Measure

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We design a novel high-efficient quantum key agreement protocol with entanglement measure, whose security and high efficiency are guaranteed. In the proposed quantum key agreement protocol, we just utilize the Bell states and two-particle states as quantum resources, and just utilize Bell measurement and the classical binary coding to generate the final shared secret key. Which reduces the quantum sources and improves the efficiency of the proposed quantum key agreement protocol. Besides, we provide the security analyses of the proposed QKA protocol, including the robustness and the attacks of participants. Analyses demonstrate that the proposed QKA protocol with entanglement measure is robust and it can resist the most attacks. In addition, we compare our protocol with typical QKA protocols, and the results show that our protocol is high-efficient. Furthermore, the proposed novel QKA protocol with entanglement measure can be implemented with existing physical technologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Gisin, N., Ribordy, G., Tittel, W., Zbinden, H.: Quantum cryptography [J]. Rev. Mod. Phys. 74(1), 145 (2002)

    Article  ADS  MATH  Google Scholar 

  2. Dubbers, D., Stöckmann, H.J.: Quantum informatics [M]. In: Quantum Physics: The Bottom-Up Approach, pp. 159–164. Springer, Berlin, Heidelberg (2013)

    Chapter  MATH  Google Scholar 

  3. Flügge, S.: Practical Quantum Mechanics [M]. Springer Science & Business Media (2012)

    Google Scholar 

  4. Bennett, C.H., Brassard, G.: Quantum cryptography: public key distribution and coin tossing [J]. In: Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing Bangalore, India, pp. 175–179 (1984)

    Google Scholar 

  5. Zhou, N.R., Wang, L.J., Gong, L.H., Zuo, X.W., Liu, Y.: Quantum deterministic key distribution protocols based on teleportation and entanglement swapping [J]. Opt. Commun. 284(19), 4836–4842 (2011)

    Article  ADS  Google Scholar 

  6. Liao, S.K., Cai, W.Q., Liu, W.Y., Zhang, L., Li, Y., Ren, J.G., Yin, J., Shen, Q., Cao, Y., Li, Z.P., Li, F.Z., Chen, X.W., Sun, L.H., Jia, J.J., Wu, J.C., Jiang, X.J., Wang, J.F., Huang, Y.M., Wang, Q., et al.: Satellite-to-ground quantum key distribution [J]. Nature. 549(7670), 43–47 (2017)

    Article  ADS  Google Scholar 

  7. Mehic, M., Niemiec, M., Rass, S., Ma, J., Peev, M., Aguado, A., Martin, V., Schauer, S., Poppe, A., Pacher, C., Voznak, M.: Quantum key distribution: a networking perspective [J]. ACM Comput. Surv. (CSUR). 53(5), 1–41 (2020)

    Article  Google Scholar 

  8. Basso Basset, F., Valeri, M., Roccia, E., Muredda, V., Poderini, D., Neuwirth, J., Spagnolo, N., Rota, M.B., Carvacho, G., Sciarrino, F., Trotta, R.: Quantum key distribution with entangled photons generated on demand by a quantum dot [J]. Sci. Adv. 7(12), eabe6379 (2021)

    Article  ADS  Google Scholar 

  9. Zhou, N.R., Zeng, G.H., Xiong, J.: Quantum key agreement protocol [J]. Electron. Lett. 40(18), 1149–1150 (2004)

    Article  ADS  Google Scholar 

  10. Chong, S.K., Hwang, T.: Quantum key agreement protocol based on BB84 [J]. Opt. Commun. 283(6), 1192–1195 (2010)

    Article  ADS  Google Scholar 

  11. Yang, Y.G., Gao, S., Li, D., Zhou, Y.H., Shi, W.M.: Two-party quantum key agreement over a collective noisy channel [J]. Quantum Inf. Process. 18(3), 1–17 (2019)

    MathSciNet  MATH  Google Scholar 

  12. Proietti, M., Ho, J., Grasselli, F., Barrow, P., Malik, M., Fedrizzi, A.: Experimental quantum conference key agreement [J]. Sci. Adv. 7(23), eabe0395 (2021)

    Article  ADS  Google Scholar 

  13. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels [J]. Phys. Rev. Lett. 70(13), 1895 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation [J]. Nature. 390(6660), 575–579 (1997)

    Article  ADS  MATH  Google Scholar 

  15. Luo, Y.H., Zhong, H.S., Erhard, M., Wang, X.L., Peng, L.C., Krenn, M., Jiang, X., Li, L., Liu, N.L., Lu, C.Y., Zeilinger, A., Pan, J.W.: Quantum teleportation in high dimensions [J]. Phys. Rev. Lett. 123(7), 070505 (2019)

    Article  ADS  Google Scholar 

  16. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing [J]. Phys. Rev. A. 59(3), 1829 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Hsu, J.L., Chong, S.K., Hwang, T., Tsai, C.W.: Dynamic quantum secret sharing [J]. Quantum Inf. Process. 12(1), 331–344 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Sutradhar, K., Om, H.: Efficient quantum secret sharing without a trusted player [J]. Quantum Inf. Process. 19(2), 1–15 (2020)

    Article  MathSciNet  Google Scholar 

  19. Lunghi, T., Kaniewski, J., Bussieres, F., Houlmann, R., Tomamichel, M., Kent, A., Gisin, N., Wehner, S., Zbinden, H.: Experimental bit commitment based on quantum communication and special relativity [J]. Phys. Rev. Lett. 111(18), 180504 (2013)

    Article  ADS  Google Scholar 

  20. Adlam, E., Kent, A.: Device-independent relativistic quantum bit commitment [J]. Phys. Rev. A. 92(2), 022315 (2015)

    Article  ADS  MATH  Google Scholar 

  21. Wang, C., Deng, F.G., Li, Y.S., Liu, X.S., Long, G.L.: Quantum secure direct communication with high-dimension quantum superdense coding [J]. Phys. Rev. A. 71(4), 044305 (2005)

    Article  ADS  Google Scholar 

  22. Zhu, F., Zhang, W., Sheng, Y., Huang, Y.: Experimental long-distance quantum secure direct communication [J]. Sci. Bull. 62(22), 1519–1524 (2017)

    Article  Google Scholar 

  23. Zhang, W., Ding, D.S., Sheng, Y.B., Zhou, L., Shi, B.S., Guo, G.C.: Quantum secure direct communication with quantum memory [J]. Phys. Rev. Lett. 118(22), 220501 (2017)

    Article  ADS  Google Scholar 

  24. Qi, Z., Li, Y., Huang, Y., Feng, J., Zheng, Y., Chen, X.: A 15-user quantum secure direct communication network [J]. Light Sci. Appl. 10(1), 1–8 (2021)

    Article  Google Scholar 

  25. Curty, M., Santos, D.J.: Quantum authentication of classical messages [J]. Phys. Rev. A. 64(6), 062309 (2001)

    Article  ADS  Google Scholar 

  26. Portmann, C.: Quantum authentication with key recycling [C]. In Annual International Conference on the Theory and Applications of Cryptographic Techniques, pp. 339–368. Springer, Cham (2017)

  27. Sikeridis, D., Kampanakis, P., Devetsikiotis, M.: Post-quantum authentication in TLS 1.3: a performance study [J]. Cryptology ePrint Archive (2020)

  28. Qian, Y., Gui, C., Liu, B., Huang, W., Xu, B.J.: Quantum identity authentication based on round robin differencial phase shift communication line [J]. Int. J. Theor. Phys. 61(2), 1–12 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  29. Zeng, G., Keitel, C.H.: Arbitrated quantum-signature scheme [J]. Phys. Rev. A. 65(4), 042312 (2022)

    Article  ADS  Google Scholar 

  30. Zou, X.F., Qiu, D.W.: Security analysis and improvements of arbitrated quantum signature schemes [J]. Phys. Rev. A. 82(4), 042325 (2010)

    Article  ADS  Google Scholar 

  31. Zhang, L., Sun, H.W., Zhang, K.J., Jia, H.Y.: An improved arbitrated quantum signature protocol based on the key-controlled chained CNOT encryption [J]. Quantum Inf. Process. 16(3), 1–15 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Feng, Y., Shi, R., Shi, J., Zhou, J., Guo, Y.: Arbitrated quantum signature scheme with quantum walk-based teleportation [J]. Quantum Inf. Process. 18(5), 1–21 (2019)

    Article  MathSciNet  Google Scholar 

  33. Diffie, W., Hellman, M.E.: New directions in cryptography [J]. IEEE Trans. Inf. Theory. 22(6), 644 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  34. Hsueh, C. C., Chen, C. Y.: Quantum key agreement protocol with maximally entangled states [C]. In: Proceedings of the 14th Information Security Conference, pp. 236–242. National Taiwan University of Science and Technology, Taipei (2004)

  35. Shukla, C., Alam, N., Pathak, A.: Protocols of quantum key agreement solely using bell states and bell measurement [J]. Quantum Inf. Process. 13(11), 2391–2405 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Murta, G., Grasselli, F., Kampermann, H., Bruß, D.: Quantum conference key agreement: a review [J]. Adv. Quantum Technol. 3(11), 2000025 (2020)

    Article  Google Scholar 

  37. Horodecki, K., Winczewski, M., Das, S.: Fundamental limitations on the device-independent quantum conference key agreement [J]. Phys. Rev. A. 105(2), 022604 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  38. Gao, H., Zhou, R.G.: Multi-party quantum key agreement protocol based on G-like states and χ+ states [J]. Int. J. Theor. Phys. 61(2), 1–13 (2022)

    Article  MathSciNet  Google Scholar 

  39. He, W.T., Wang, J., Zhang, T.T., Alzahrani, F., Hobiny, A., Alsaedi, A., Hayat, T., Deng, F.G.: High-efficient three-party quantum key agreement protocol with quantum dense coding and bell states [J]. Int. J. Theor. Phys. 58(9), 2834–2846 (2019)

    Article  MATH  Google Scholar 

  40. Ghosh, S., Kar, G., Roy, A., Sen, A., Sen, U.: Distinguishability of bell states [J]. Phys. Rev. Lett. 87(27), 277902 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  41. Wang, P., Sun, Z.W., Sun, X.Q.: Multi-party quantum key agreement protocol secure against collusion attacks [J]. Quantum Inf. Process. 16(7), 170 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Zhao, X.Q., Zhou, N.R., Chen, H.Y., Gong, L.H.: Multiparty quantum key agreement protocol with entanglement swapping [J]. Int. J. Theor. Phys. 58(2), 436–450 (2019)

    Article  MATH  Google Scholar 

  43. Iqbal, H., Krawec, W.O.: Semi-quantum cryptography [J]. Quantum Inf. Process. 19(3), 1–52 (2020)

    Article  MathSciNet  Google Scholar 

  44. Zou, X.F., Qiu, D.W., Li, L.Z., Wu, L.H., Li, L.J.: Semiquantum-key distribution using less than four quantum states [J]. Phys. Rev. A. 79(5), 052312 (2009)

    Article  ADS  Google Scholar 

  45. Cabello, A.: Quantum key distribution in the Holevo limit [J]. Phys. Rev. Lett. 85(26), 5635 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant Nos.61976232 and 51978675).

Funding

This work was supported by the National Natural Science Foundation of China (Grant Nos.61976232 and 51978675).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. The analyses and design were performed by Xing-Qiang Zhao, Hai Wan, and Lv-Zhou Li. The first draft of the manuscript was written by Xing-Qiang Zhao and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding authors

Correspondence to Xing-Qiang Zhao or Hai Wan.

Ethics declarations

Competing Interests

The authors have no relevant financial or non-financial interests to disclose.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, XQ., Wan, H. & Li, LZ. High-efficient Quantum Key Agreement Protocol with Entanglement Measure. Int J Theor Phys 61, 183 (2022). https://doi.org/10.1007/s10773-022-05166-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10773-022-05166-y

Keywords

Navigation