Skip to main content
Log in

The Behavior of Many-body Localization in the Periodically Driven Heisenberg XXX Model

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper, we use exact matrix diagonalization to research property of the many-body localization (MBL) in the disordered Heisenberg XXX model with periodic driving. We get the periodic time-dependent external field by trigonometric function, which is added to periodically drive this model. It is demonstrated that the fidelity of eigenstate is able to capture quantum criticality underlying many-body physics (Zhou et al. Phys. Rev. Lett. 100, 080601, 2008, Zhou and Barjaktarevi J. Phys. A: Math. Theor. 41, 412001 2008), which can be used to characterize the many-body localization transition in this closed spin system (Zanardi and Paunkovic Phys. Rev. E 74, 031123, 2006). We obtain the fidelity for high-energy many-body eigenstates, namely, the excited state fidelity, which shows the phase transition of periodically driven Heisenberg XXX chain with different disordered external field strengths and different system sizes. It is demonstrated that when Heisenberg XXX system is in a very small disorder, periodic driving can cause the occurrence of a transition from ergodic phase to MBL phase. In contrast to the HS model which has global two-body interaction, which we have studied recently with the same situation, there is no MBL phase transition when we drive the HS model in ergodic phase with periodic driving. It also shows that for the strong disordered Heisenberg XXX system, there will exist a critical driving period Tc, when driving period T is higher than Tc, the system will undergo a transition from localized phase to ergodic phase and the MBL phase will be broken. Furthermore, we discover that the size of the system and the strength of disorder will affect the critical point of driving period and the magnitude of the phase change. For the same system, the critical point increases as the strength of disorder increases. We also explore the non-disorder system of HS model with the same driving to explore the properties of MBL, it shows that under periodic driving, the non-disordered HS system has the quantum phase transition rather than MBL phase transition. This illustrates the important role of disorder on MBL.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Zhou, H.Q., Orus, R., Vidal, G.: Ground state fidelity from tensor network representations. Phys. Rev. Lett 100, 080601 (2008)

    Article  ADS  Google Scholar 

  2. Zhou, H.Q., Barjaktarevi, J.P.: Fidelity and quantum phase transitions. J. Phys. A: Math. Theor. 41, 412001 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  3. Zanardi, P., Paunkovic, N.: Ground state overlap and quantum phase transitions. Phys. Rev. E 74, 031123 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  4. Anderson, P.W.: Absence of diffusion in certain random lattices. Phys. Rev. Lett. 109, 1492 (1958)

    ADS  Google Scholar 

  5. Abrahams, E.: 50 Years of Anderson localization. World Scientific Publishing (2010)

  6. Stolz, G.: . In: Sims, R., Ueltschi, D. (eds.) Entropy and the Quantum II. American Mathematical Society, Providence (2010)

  7. Anderson, P.W., Licciardello, D.C., Ramakrishnan, T.V.: Scaling theory of localization: absence of quantum diffusion in two dimensions. Phys. Rev. Lett. 42, 673 (1979)

    Article  ADS  Google Scholar 

  8. Basko, D.M., Aleiner, I.L., Altshuler, B.L.: Metal-insulator transition in a weakly interacting many-electron system with localized single-particle states. Ann. Phys. (Amsterdam) 321, 1126 (2006)

    Article  ADS  MATH  Google Scholar 

  9. Pal, A., Huse, D.A.: Many-body localization phase transition. Phys. Rev. B 82, 174411 (2010)

    Article  ADS  Google Scholar 

  10. Hu, T.T., Xue, K., Li, X.D., Zhang, Y., Ren, H.: Fidelity of the diagonal ensemble signals the many-body localization transition. Phys. Rev. E 94, 052119 (2016)

    Article  ADS  Google Scholar 

  11. Khemani, V., Lim, S.P., Sheng, D.N., Huse, D.A.: Critical properties of the Many-Body localization transition. Phys. Rev. X 7, 021013 (2016)

    Google Scholar 

  12. Nandkishore, R., Huse, D.A.: Many-body localization and thermalization in quantum statistical mechanics. Annu. Rev. Con. Matt. Phys. 6, 15–38 (2015)

    Article  ADS  Google Scholar 

  13. Strek, W., Cichy, B., Radosinski, L., Gluchowski, P., Marciniak, L., Lukaszewicz, M., Hreniak, D.: Laser-induced white-light emission from graphene ceramics-opening a band gap in graphene. Light Sci. Appl. 4, e237 (2015)

    Article  ADS  Google Scholar 

  14. Rao, W.-J.: Machine learning the many-body localization transition in random spin systems. J. Phys. 30, 395902 (2018)

    Google Scholar 

  15. Etezadi, D., Warner, J.B. IV, Ruggeri, F.S., Dietler, G., Lashuel, H.A., Altug, H.: Nanoplasmonic mid-infrared biosensor for in vitro protein secondary structure detection. Light Sci. Appl. 6, e17029 (2017)

    Article  ADS  Google Scholar 

  16. Altman, E.: Many-body localization and quantum thermalization. Nat. Phys 14, 979–983 (2018)

    Article  Google Scholar 

  17. Luitz, D.J., Laflorencie, N., Alet, F.: Many-body localization edge in the random-field Heisenberg chain. Phys. Rev. B 91, 081103 (2015)

    Article  ADS  Google Scholar 

  18. Qu, Y., Li, Q., Cai, L., Pan, M., Ghosh, P., Dum, K., Qiu, M.: Thermal camouflage based on the phase-changing material GST. Light Sci. Appl. 7, 26 (2018)

    Article  ADS  Google Scholar 

  19. Dmitry, A.A., Ehud, A., Immanuel, B., Maksym, S.: Many-body localization, thermalization, and entanglement. Rev. Mod. Phys. 91, 021001 (2019)

    Article  MathSciNet  Google Scholar 

  20. Monthus, C.: Many-body-localization Transition : sensitivity to twisted boundary conditions. J. Phys. A: Math. Theor. 50, 095002 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Rispoli, M., Lukin, A., Schittko, R., et al.: Quantum critical behaviour at the many-body localization transition. Nature 573, 385–389 (2019)

    Article  ADS  Google Scholar 

  22. Rigol, M., Dunjko, V., Olshanii, M.: Thermalization and its mechanism for generic isolated quantum systems. Nature (London) 452, 854 (2008)

    Article  ADS  Google Scholar 

  23. Biasco, S., Beere, H.E., Ritchie, D.A., Li, L., Giles Davies, A., Linfield, E.H., Vitiello, M.S.: Frequency-tunable continuous-wave random lasers at terahertz frequencies. Light Sci. Appl. 8, 43 (2019)

    Article  ADS  Google Scholar 

  24. Thimothee, T., Franrois, H., Markus, M., Wojciech, D.R.: Many-body delocalization as a quantum avalanche. Phys. Rev. Lett. 121, 140601 (2018)

    Article  ADS  Google Scholar 

  25. Rubin, S., Hong, B., Fainman, Y.: Subnanometer imaging and controlled dynamical patterning of thermocapillary driven deformation of thin liquid films. Light Sci. Appl. 8, 77 (2019)

    Article  ADS  Google Scholar 

  26. Grifoni, M., Hanggi, P.: Driven quantum tunneling. Phys. Rep. 304, 229–354 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  27. D’Alessio, L., Rigol, M.: Long-time behavior of isolated periodically driven interacting lattice systems. Phys. Rev. X 4, 041048 (2014)

    Google Scholar 

  28. Petsch, S., Schuhladen, S., Dreesen, L., Zappe, H.: The engineered eyeball, a tunable imaging system using soft-matter micro-optics. Light Sci. Appl. 5, e16068 (2016)

    Article  ADS  Google Scholar 

  29. Bukov, M., D’Alessio, L., Polkovnikov, A.: Universal High-Frequency Behavior of Periodically Driven Systems: From Dynamical Stabilization to Floquet Engineering. Adv. Phys. 64 (2015)

  30. Dutt, A., Minkov, M., Williamson, I.A.D., Fan, S.: Higher-order topological insulators in synthetic dimensions. Light Sci. Appl. 9, 131 (2020)

    Article  ADS  Google Scholar 

  31. Ponte, P., Papic, Z., Huveneers, F., Abanin, D.A.: Many-Body Localization in periodically driven system. Phys. Rev. Lett. 144, 140401 (2015)

    Article  Google Scholar 

  32. Matrasulov, D.U., Milibaeva, G.M., Salomov, U.R., Sundaram, B.: Ralativistic kicked rotor. Phys. Rev. E 72, 016213 (2005)

    Article  ADS  Google Scholar 

  33. D’Alessio, L., Polkovnikov, A.: Many-body energy localization transition in periodically driven systems. Ann. Phys. 333, 19–33 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Ponte, P., Chandran, A., Papic, Z., Abanin, D.A.: Periodically driven ergodic and many-body localized quantum systems. Ann. Phys. 353, 196–204 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  35. Magnus, W.: On the exponential solution of differential equations for a linear Operator. Commun. Pure. Appl. Math. 7, 649 (1954)

    Article  MathSciNet  MATH  Google Scholar 

  36. Blanes, S., Casas, F., Oteo, J.A., Ros, J.: The magnus expansion and some of its applications. Phys. Rep. 470 (2009)

  37. Adachi, S., Toda, M., Ikeda, K.: Quantum-Classical correspondence in many-dimensional quantum chaos. Phys. Rev. Lett. 61, 659 (1988)

    Article  ADS  Google Scholar 

  38. Gadway, B., Reeves, J., Krinner, L., Schneble, D.: Evidence for a quantum-to-classical transition in a pair of coupled quantum rotors. Phys. Rev. Lett. 110, 190401 (2013)

    Article  ADS  Google Scholar 

  39. Huse, D.A., Nandkishore, R., Oganesyan, V.: Phenomenology of fully many-body-localized systems. Phys. Rev. B 90, 174202 (2014)

    Article  ADS  Google Scholar 

  40. Tomiya, M., Tsuyuki, H., Sakamoto, S.: Quantum fidelity and dynamical scar states on chaotic billiard system. Com. Phys. Comm. 182, 245–248 (2011)

    Article  ADS  MATH  Google Scholar 

  41. Langari, A., Rezakhani, A.T.: Quantum renormalization group for ground-state fidelity. New J. Phys. 14, 053014 (2012)

    Article  ADS  MATH  Google Scholar 

  42. Dai, Y.W., Hu, B.Q., Zhao, J.H., Zhou, H.Q.: Ground-state fidelity and entanglement entropy for the quantum three-state Potts model in one spatial dimension. J. Phys. A: Math. Theor. 43, 372001 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  43. Quan, H.T., Cucchietti, F.M.: Quantum fidelity and thermal phase transitions. Phys. Rev. E 79, 031101 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  44. Garnerone, S., Jacobson, N.T., Haas, S., Zanardi, P.: Fidelity approach to the disordered quantum XY model. Phys. Rev. Lett. 102, 057205 (2009)

    Article  ADS  Google Scholar 

  45. Albuquerque, A.F., Alet, F., Sire, C., Capponi, S.: Quantum critical scaling of fidelity susceptibility. Phys. Rev. B 81, 064418 (2010)

    Article  ADS  Google Scholar 

  46. Zanardi, P., Quan, H.T., Wang, X., Sun, C.P.: Mixed-state fidelity and quantum criticality at finite temperature. Phys. Rev. A 75, 032109 (2007)

    Article  ADS  Google Scholar 

  47. Rams, M.M., Zwolak, M., Damski, B.: A quantum phase transition in a quantum external field: Superposing two magnetic phases. Sci. Rep. 2, 655 (2012)

    Article  ADS  Google Scholar 

  48. Li, S.H., Lei, G.P.: Quantum phase transition in a two-dimensional quantum Ising model: Tensor network states and ground-state fidelity. J. Phys.: Conf. Ser. 1087, 052011 (2018)

    Google Scholar 

  49. Chen, S., Wang, L., Gu, S.J., Wang, Y.: Fidelity and quantum phase transition for the Heisenberg chain with next-nearest-neighbor interaction. Phys. Rev. E 76, 061108 (2007)

    Article  ADS  Google Scholar 

  50. Xiong, H.N., Ma, J., Wang, Y., Wang, X.G.: Reduced fidelity and quantum phase transitions in spin-1/2 frustrated Heisenberg chains. J. Phys. A: Math. Theor. 42, 065304 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  51. Hu, T.T., Xue, K., Li, X., et al.: Excited-state fidelity as a signal for the many-body localization transition in a disordered Ising chain. Sci. Rep. 7, 577 (2017)

    Article  ADS  Google Scholar 

  52. Luca, A.D., Scardicchio, A.: Ergodicity breaking in a model showing many-body localization. Europhys. Lett. 101, 37003 (2013)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

This work is supported by “the Fundamental Research Funds for the Central Universities” (No. 2412019FZ037).

Funding

This work is supported by “the Fundamental Research Funds for the Central Universities” (No. 2412019FZ037) and by Special fund of NSF of China (Grant No. 11947405).

Author information

Authors and Affiliations

Authors

Contributions

Taotao H, Hui Zhao contributed the idea. Taotao Hu, Hui Zhao, Haoyue Li performed the calculations and prepared the figures. Hui Zhao wrote the main manuscript. Taotao Hu, Kang Xue, Xiaodan Li, Shuangyuan Ni, Jiali Zhang and Hang Ren checked the calculations and improved the manuscript. All authors contributed to discussions and reviewed the manuscript.

Corresponding author

Correspondence to Taotao Hu.

Ethics declarations

Conflict of Interests

The authors declare that they have no competing interests.

Additional information

Availability of data and material

We guarantee that all data and materials support our published claims and comply with field standards.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, H., Hu, T., Xue, K. et al. The Behavior of Many-body Localization in the Periodically Driven Heisenberg XXX Model. Int J Theor Phys 60, 3177–3187 (2021). https://doi.org/10.1007/s10773-021-04843-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-021-04843-8

Keywords

Navigation