Skip to main content
Log in

Entanglement Concentration Protocols for GHZ-type Entangled Coherent State Based on Linear Optics

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We proposed two entanglement concentration protocols (ECPs) to obtain maximally entangled Greenberger-Horne-Zeilinger (GHZ)-type entangled coherent state (ECS) from the corresponding partially entangled GHZ-type ECSs. We obtained the first ECP using a partially entangled GHZ-type ECS assisted with a superposition of single-mode coherent state, however the second ECP is designed using two copies of partially entangled GHZ-type ECSs. The success probabilities have also been calculated and discussed for both the ECPs. We have further compared the success probabilities of our first ECP for 3-mode GHZ-type ECS with an ECP of 3-mode W-type ECS and found that our ECP is more efficient (maximal success probabilities) for larger value (β = 0.7) of state parameter. For the physical realization, two optical circuits (for two ECPs) using linear optical elements, viz 50:50 beam splitter, phase shifter, and photon detectors are provided, which support the future experimental implementation possible with the present technology.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., Crépeau, C., et al.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  2. Bennett, C.H., Wiesner, S.J.: Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. Phys. Rev. Lett. 69, 2881–2884 (1992)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  3. Ekert, A.K.: Quantum cryptography based on Bell’s Theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  4. Shukla, C., Alam, N., Pathak, A.: Protocols of quantum key agreement solely using Bell states and Bell measurement. Quantum Inf. Process. 13, 2391 (2014)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  5. Shukla, C., Thapliyal, K., Pathak, A.: Semi-quantum communication: protocols for key agreement, controlled secure direct communication and dialogue. Quantum Inf. Process. 16, 295 (2017)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  6. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829–1834 (1999)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  7. Shukla, C., Pathak, A.: Hierarchical quantum communication. Phys. Lett. A 377, 1337–1344 (2013)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  8. Shukla, C., Thapliyal, K., Pathak, A.: Hierarchical joint remote state preparation in noisy environment. Quantum Inf. Process. 16, 205 (2017)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  9. Bich, C.T., An, N.B.: Hierarchically controlling quantum teleportations. Quantum Info. Process. 18, 245 (2019)

    Article  MathSciNet  Google Scholar 

  10. Long, G.-L., Liu, X.-S.: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65, 032302 (2002)

    Article  ADS  Google Scholar 

  11. Deng, F.-G., Long, G.-L., Liu, X.-S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  12. Hu, J.-Y., Yu, B., Jing, M.-Y., Xiao, L.-T., Jia, S.-T., Qin, G.-Q., Long, G.-L.: Experimental quantum secure direct communication with single photons. Light Sci. Appl. 5, e16144 (2016)

    Article  Google Scholar 

  13. Zhang, W., Ding, D.-S., Sheng, Y.-B., Zhou, L., Shi, B.-S., Guo, G.-C.: Quantum secure direct communication with quantum memory. Phys. Rev. Lett. 118, 220501 (2017)

    Article  ADS  Google Scholar 

  14. Liao, S.-K., et al.: Satellite-to-ground quantum key distribution. Nature 549(7670), 43–47 (2017)

    Article  ADS  Google Scholar 

  15. Mastriani, M., Iyengar, S.S.: Satellite quantum repeaters for a quantum Internet. Quantum Engineering 2.4 e55 (2020)

  16. Pathak, A.: Elements of Quantum Computation and Quantum Communication. CRC Press, Boca Raton (2013)

    Book  MATH  Google Scholar 

  17. Li, W.-L., Li, C.-F., Guo, G.-C.: Probabilistic teleportation and entanglement Matching. Phys. Rev. A 61, 034301 (2000)

    Article  ADS  Google Scholar 

  18. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  19. Pan, J.-W., Gasparoni, S., Ursin, R., Weihs, G., Zeilinger, A.: Experimental entanglement purification of arbitrary unknown states. Nature 423, 417–422 (2003)

    Article  ADS  Google Scholar 

  20. Sheng, Y.-B., Deng, F.-G.: Deterministic entanglement purification and complete nonlocal Bell-state analysis with hyperentanglement. Phys. Rev. A 81, 032307 (2010)

    Article  ADS  Google Scholar 

  21. Yan, P.-S., Zhou, L., Zhong, W., Sheng, Y.-B.: Feasible time-bin entanglement purification based on sum-frequency generation. Opt. Express 29, 571 (2021)

    Article  ADS  Google Scholar 

  22. Hu, X. -M., et al.: Long-distance entanglement purification for quantum communication. Phys. Rev. Lett. 126, 010503 (2021)

    Article  ADS  Google Scholar 

  23. Bennett, C.H., Bernstein, H.J., Popescu, S., Schumacher, B.: Concentrating partial entanglement by local operations. Phys. Rev. A 53, 2046–2052 (1996)

    Article  ADS  Google Scholar 

  24. Bose, S., Vedral, V., Knight, P.L.: Purification via entanglement swapping and conserved entanglement. Phys. Rev. A 60, 194–197 (1999)

    Article  ADS  Google Scholar 

  25. Sheng, Y.-B., Zhou, L., Zhao, S.-M., Zheng, B.-Y.: Efficient single-photon-assisted entanglement concentration for partially entangled photon pairs. Phys. Rev. A 85, 012307 (2012)

    Article  ADS  Google Scholar 

  26. Sheng, Y.-B., Zhou, L., Zhao, S.-M.: Efficient two-step entanglement concentration for arbitrary W states. Phys. Rev. A 85, 042302 (2012)

    Article  ADS  Google Scholar 

  27. Sheng, Y.-B., Pan, J., Guo, R., Zhou, L., Wang, L.: Efficient N-particle W state concentration with different parity check gates. Sci. China- Phys. Mech. Astron. 58, 060301 (2015)

    Article  Google Scholar 

  28. Zhao, S.Y., Liu, J., Zhou, L., Sheng, Y.B.: Two-step entanglement concentration for arbitrary electronic cluster state. Quantum Inf. Process. 12, 3633 (2013)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  29. Zhao, Z., Pan, J.-W., Zhan, M.S.: Practical scheme for entanglement concentration. Phys. Rev. A 64, 014301 (2001)

    Article  ADS  Google Scholar 

  30. Shukla, C., Banerjee, A., Pathak, A.: Protocols and quantum circuits for implementing entanglement concentration in cat state, GHZ-like state and 9 families of 4-qubit entangled states. Quantum Inf. Process. 14, 2077 (2015)

    Article  MATH  ADS  Google Scholar 

  31. Du, F.F., Long, G.L.: Refined entanglement concentration for electron-spin entangled cluster states with quantum-dot spins in optical microcavities. Quantum Inf. Process. 16, 26 (2017)

    Article  MATH  ADS  Google Scholar 

  32. Liu, J., Zhou, L., Zhong, W., Sheng, Y.-B.: Logic Bell state concentration with parity check measurement. Front. Phys. 14, 21601 (2019)

    Article  ADS  Google Scholar 

  33. Wang, X., Hu, Z.-N.: Entanglement concentration for photon systems assisted with single photons. Optik-int. J. for Light and Electron Optics 176, 143–151 (2019)

    Article  Google Scholar 

  34. Zhao, Z., Yang, T., Chen, Y.-A., Zhang, A.-N., Pan, J.-W.: Experimental realization of entanglement concentration and a quantum repeater. Phys. Rev. Lett. 90, 207901 (2003)

    Article  ADS  Google Scholar 

  35. Cunha, M.M., Fonseca, A., Silva, E.O.: Tripartite entanglement: foundations and applications. Universe 5, 209 (2019)

    Article  ADS  Google Scholar 

  36. Xia, Y., Hao, S.-Y., Dong, Y.-J., Song, J.: Effective schemes for preparation of Greenberger-Horne-Zeilinger and W maximally entangled states with cross-Kerr nonlinearity and parity-check measurement. Appl. Phys. B 110, 551–561 (2013)

    Article  ADS  Google Scholar 

  37. Tsujimoto, Y., Tanaka, M., Iwasaki, N., Ikuta, R., Miki, S., Yamashita, T., Terai, H., Yamamoto, T., Koashi, M., Imoto, N.: High-fidelity entanglement swapping and generation of three-qubit GHZ state using asynchronous telecom photon pair sources. Sci. Rep. 8, 1446 (2018)

    Article  ADS  Google Scholar 

  38. Zhang, C., Huang, Y.-F., Wang, Z., Liu, B.-H., Li, C.-F., Guo, G.-C.: Experimental Greenberger-Horne-Zeilinger-Type six-photon quantum nonlocality. Phys. Rev. Lett. 115, 260402 (2015)

    Article  ADS  Google Scholar 

  39. Ren, C., Su, H.-Y., Xu, Z.-P., Wu, C., Chen, J.-L.: Optimal GHZ paradox for three qubits. Sci. Rep. 5, 13080 (2015)

    Article  ADS  Google Scholar 

  40. Quan, Q., Zhao, M.-J., Fei, S.-M., Fan, H., Yang, W.-L., Wang, T.-J., Long, G.-L.: Two-copy quantum teleportation based on GHZ measurement. Quantum Inf. Process. 19, 205 (2020)

    Article  MathSciNet  ADS  Google Scholar 

  41. Zhang, H., Wang, H.: Entanglement concentration of microwave photons based on the Kerr effect in circuit QED. Phys. Rev. A 95, 052314 (2017)

    Article  ADS  Google Scholar 

  42. Deng, F.G.: Optimal nonlocal multipartite entanglement concentration based on projection measurements. Phys. Rev. A 85, 022311 (2012)

    Article  ADS  Google Scholar 

  43. Chen, S.-S., Zhang, H., Ai, Q., Yang, G.-J.: Phononic entanglement concentration via optomechanical interactions. Phys. Rev. A 100, 052306 (2019)

    Article  ADS  Google Scholar 

  44. Sanders, B.C.: Entangled coherent states. Phys. Rev. A 45, 6811 (1992)

    Article  ADS  Google Scholar 

  45. Sanders, B.C.: Review of entangled coherent states. J. Phys. A: Math. Theor. 45, 244002 (2012)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  46. Su, X., Tan, A., Jia, X., Zhang, J., Xie, C., Peng, K.: Experimental preparation of quadripartite cluster and Greenberger-Horne-Zeilinger entangled states for continuous variables. Phys. Rev. Lett. 98, 070502 (2007)

    Article  ADS  Google Scholar 

  47. Yukawa, M., Ukai, R., van Loock, P., Furusawa, A.: Experimental generation of four-mode continuous-variable cluster states. Phys. Rev. A 78, 012301 (2008)

    Article  MATH  ADS  Google Scholar 

  48. Jeong, H., An, N.B.: Greenberger-horne-zeilinger-type and W-type entangled coherent states: Generation and Bell-type inequality tests without photon counting. Phys. Rev. A 74, 022104 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  49. An, N.B., Kim, J.: Cluster-type entangled coherent states: generation and application. Phys. Rev. A 80, 042316 (2009)

    Article  ADS  Google Scholar 

  50. Chen, H.N., Liu, J.M.: Teleportation of a bipartite entangled coherent state via a four-partite cluster-type entangled state. Commun. Theor. Phys. 52, 597–600 (2009)

    Article  MathSciNet  MATH  ADS  Google Scholar 

  51. Luiz, F.S., Rigolin, G.: Teleportation-based continuous variable quantum cryptography. Quantum Inf. Process. 16, 58 (2017)

    Article  MATH  ADS  Google Scholar 

  52. Wang, X.: Quantum teleportation of entangled coherent states. Phys. Rev. A 64, 022302 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  53. Prakash, H., Chandra, N., Prakash, R.: Shivani: Improving the teleportation of entangled coherent states. Phys. Rev. A 75, 044305 (2007)

    Article  ADS  Google Scholar 

  54. Allati, A., El Baz, M., El Hassouni, Y.: Quantum key distribution via tripartite coherent states. Quantum Inf. Process. 10, 589–602 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  55. Menicucci, N.C., Loock, P.V., Gu, M., Weedbrook, C., Ralph, T.C., Nielsen, M.A.: Universal quantum computation with continuous-variable cluster states. Phys. Rev. Lett. 97, 110501 (2006)

    Article  ADS  Google Scholar 

  56. Gu, M., Weedbrook, C., Menicucci, N.C., Ralph, T.C., Loock, P.V.: Quantum computing with continuous-variable clusters. Phys. Rev. A79, 062318 (2009)

    Article  ADS  Google Scholar 

  57. Weedbrook, C., Pirandola, S., García-patrón, R., Cerf, N.J., et al.: Gaussian quantum information. Rev. Mod. Phys. 84, 621 (2012)

    Article  ADS  Google Scholar 

  58. An, N.B.: Optimal processing of quantum information via W-type entangled coherent states. Phys. Rev. A 69, 022315 (2004)

    Article  ADS  Google Scholar 

  59. Sheng, Y.-B., Qu, C.-C., Yang, O.-Y., Feng, Z.-F., Zhou, L.: Practical entanglement concentration for entangled coherent states. Int. J. of Theor. Phys. 53, 2033–2040 (2014)

    Article  MATH  Google Scholar 

  60. Sheng, Y.-B., Liu, J., Zhao, S.-Y., Wang, L., Zhou, L.: Entanglement concentration for W-type entangled coherent states. Chin. Phys. B 23, 080305 (2014)

    Article  ADS  Google Scholar 

  61. Sisodia, M., Shukla, C., Long, G.L.: Linear optics-based entanglement concentration protocols for cluster-type entangled coherent state. Quantum Inf. Process. 18, 253 (2019)

    Article  MathSciNet  ADS  Google Scholar 

  62. Guo, R., Zhou, L., Gu, S.-P., Wang, X.-F., Sheng, Y.-B.: Hybrid entanglement concentration assisted with single coherent state. Chin. Phys. B 25, 030302 (2016)

    Article  Google Scholar 

  63. Shukla, C., Malpani, P., Thapliyal, K.: Hierarchical Quantum Network using Hybrid Entanglement. Quantum Inf. Process. https://doi.org/10.1007/s11128-021-03057-5 (2021)

  64. Pandey, R.K., Prakash, R., Prakash, H.: Controlled quantum teleportation of superposed coherent state using GHZ entangled coherent state. Int. J. Theor. Phys. 58, 3342–3351 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  65. Prakash, R., Pandey, R.K., Prakash, H.: Controlled entanglement diversion using GHZ type entangled coherent state. Int. J. Theor. Phys. 58, 1227–1236 (2019)

    Article  MathSciNet  MATH  Google Scholar 

  66. Wang, X.: Quantum teleportation of entangled coherent states. Phys. Rev. A 64, 022302 (2001)

    Article  MathSciNet  ADS  Google Scholar 

  67. van Enk, S.J., Hirota, O.: Entangled coherent states: Teleportation and decoherence. Phys. Rev. A 64, 022313 (2001)

    Article  ADS  Google Scholar 

  68. van Enk, S.J.: Entanglement capabilities in infinite dimensions: multidimensional entangled coherent states. Phys. Rev. Lett. 91, 017902 (2003)

    Article  ADS  Google Scholar 

Download references

Acknowledgments

MS thanks to the Department of Science and Technology (DST), India, for support provided through the DST project No. S/DST/VNA/20190004. Authors also thank Kishore Thapliyal for his interest in the work and helpful suggestions.

Funding

The work has been supported by self funds.

Author information

Authors and Affiliations

Authors

Contributions

MS performed the calculations, CS analyzed, guided, wrote and reviewed the manuscript.

Corresponding author

Correspondence to Chitra Shukla.

Ethics declarations

Consent to participate

As a corresponding author, I have taken the consent of other authors.

Animal Research

There is no involvement of animal research in our work.

Competing interests

The authors declare no conflict of interest.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sisodia, M., Shukla, C. Entanglement Concentration Protocols for GHZ-type Entangled Coherent State Based on Linear Optics. Int J Theor Phys 60, 1624–1634 (2021). https://doi.org/10.1007/s10773-021-04785-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-021-04785-1

Keywords

Navigation