Skip to main content
Log in

Efficient Tripartite Quantum Operation Sharing with Five-Qubit Absolutely Maximally Entangled State

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

A tripartite quantum operation sharing protocol is proposed by utilizing a five-qubit absolutely maximally entangled (AME) state presented by Helwig et al. (Phys. Rev. A 86, 052335 (2012). The security of the proposed protocol is analyzed and ensured. The essential role of the state in this quantum task is explained. The protocol determinacy and the sharer asymmetry are identified. The experimental feasibility of the proposed protocol is discussed and confirmed. Moreover, the protocol is compared with Peng’s tripartite protocol using a six-qubit AME state [Quantum Inf Process 14, 4255 (2015)] and its distinct advantages of consuming less quantum resources, degrading the intensity of necessary operations, and owning the higher intrinsic efficiency, are revealed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Einstein, A., Podolsky, B., Rosen, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 47, 777 (1935)

    Article  ADS  Google Scholar 

  2. Bohr, N.: Can quantum-mechanical description of physical reality be considered complete? Phys. Rev. 48, 696 (1935)

    Article  ADS  Google Scholar 

  3. Ekert, A.K.: Quantum cryptography based on Bell’s theorem. Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  4. Bennett, C.H., Brassard, G., Mermin, N.D.: Quantum cryptography without Bells theorem. Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  5. Bennett, C.H., et al.: Teleporting an unknown quantum state via dual classical and EinsteinPodolsky-Rosen channels. Phys. Rev. Lett. 68, 557 (1993)

    Article  ADS  Google Scholar 

  6. Hillery, M., Buzek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  7. Zhang, Z.J., Man, Z.X.: Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A 72, 022303 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  8. Zhang, Z.J., Li, Y., Man, Z.X.: Multiparty quantum secret sharing. Phys. Rev. A 71, 044301 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  9. Wang, C., et al.: Quantum secure direct communication with high-dimension quantum superdense coding. Phys. Rev. A 71, 044305 (2005)

    Article  ADS  Google Scholar 

  10. Yan, F.L., Gao, T.: Quantum secret sharing between multiparty and multiparty without entanglement. Phys. Rev. A 72, 012304 (2005)

    Article  ADS  Google Scholar 

  11. Deng, F.G., Long, G.L., Liu, X.S.: Two-step quantum direct communication protocol using the Einstein-Podolsky-Rosen pair block. Phys. Rev. A 68, 042317 (2003)

    Article  ADS  Google Scholar 

  12. Deng, F.G., Long, G.L.: Controlled order rearrangement encryption for quantum key distribution. Phys. Rev. A 68, 042315 (2003)

    Article  ADS  Google Scholar 

  13. Bennett, C.H., et al.: Remote state preparation. Phys. Rev. Lett. 87, 077902 (2001)

    Article  ADS  Google Scholar 

  14. Cheung, C.Y., Zhang, Z.J.: Criterion for faithful teleportation with an arbitrary multiparticle channel. Phys. Rev. A 80, 022327 (2009)

    Article  ADS  Google Scholar 

  15. Zhang, Z.J., Liu, Y.M.: Perfect teleportation of arbitrary n-qudit states using different quantum channels. Phys. Lett. A 372, 28 (2007)

    Article  ADS  Google Scholar 

  16. Bouwmeester, D., et al.: Experimental quantum teleportation. Nature 390, 575 (1997)

    Article  ADS  Google Scholar 

  17. Huelga, S.F., Vaccaro, J.A., Chefles, A.: Quantum remote control: Teleportation of unitary operations. Phys. Rev. A 63, 042303 (2001)

    Article  ADS  Google Scholar 

  18. Zhang, Z.J., Cheung, C.Y.: Shared quantum remote control: quantum operation sharing. J. Phys. B 44, 165508 (2011)

    Article  ADS  Google Scholar 

  19. Ye, B.L., Liu, Y.M., Liu, X.S., Zhang, Z.J.: Remotely sharing single-qubit operation with five-qubit genuine state. Chin. Phys. Lett. 30, 020301 (2013)

    Article  ADS  Google Scholar 

  20. Xie, C.M., et al.: Probabilistic three-party sharing of operation on a remote qubit. Entropy 17, 814 (2015)

    Google Scholar 

  21. Duan, Y.J., Zha, X.W.: Remotely sharing a single-qubit operation via a six-qubit entangled state. Int. J. Theor. Phys. 54, 877 (2015)

    Article  Google Scholar 

  22. Ji, Q.B., et al.: Tripartite quantum operation sharing with two asymmetric three-qubit W states in five entanglement structures. Quantum Inf. Process. 13, 1659 (2014)

    Article  ADS  Google Scholar 

  23. Xing, H., et al.: Four-party deterministic operation sharing with six-qubit cluster state. Quantum Inf. Process. 13, 1553 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  24. Ji, Q.B., et al.: Quantum operation sharing with symmetric and asymmetric W states. Quantum Inf. Process. 12, 2453 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  25. Wang, S.F., Liu, Y.M., Zhang, Z.J.: Deterministic single-qubit operation sharing with five-qubit cluster state. Quantum Inf. Process. 12, 2497 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  26. Liu, D.C., Liu, Y.M., Zhang, Z.J.: Shared quantum control via sharing operation on remote single qutrit. Quantum Inf. Process. 12, 3527 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  27. Peng, J.: Tripartite operation sharing with a six-particle maximally entangled state. Quant. Inf. Process. 14, 4255 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  28. Peng, J.: Tripartite operation sharing with a five-qubit Brown state. Quant. Inf. Process. 15, 2465 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  29. Zhang, Z.J., Zhang, W.B., Ye, B.L.: Tripartite quantum operation sharing with six-qubit entangled state. Int. J. Theor. Phys. 59, 1605 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  30. Helwig, W., et al.: Absolute maximal entanglement and quantum secret sharing. Phys. Rev. A 86, 052335 (2012)

    Article  ADS  Google Scholar 

  31. Riebe, M., et al.: Deterministic quantum teleportation with atoms. Nature 429, 734 (2004)

    Article  ADS  Google Scholar 

  32. Barrett, M.D., et al.: Deterministic quantum teleportation of atomic qubits. Nature 429, 737 (2004)

    Article  ADS  Google Scholar 

  33. Solano, E., et al.: Reliable teleportation in trapped ions. Eur. Phys. J. D 13, 121 (2001)

    Article  ADS  Google Scholar 

  34. Bouwmeester, D., et al.: Experimental quantum teleportation. Nature 390, 575 (1997)

    Article  ADS  Google Scholar 

  35. Boschi, D., et al.: Experimental realization of teleporting an unknown pure quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 80, 1121 (1998)

    Article  ADS  MathSciNet  Google Scholar 

  36. Ikram, M., et al.: Quantum teleportation of an entangled state. Phys. Rev. A 62, 022307 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  37. Zheng, S.B.: Scheme for approximate conditional teleportation of an unknown atomic state without the Bell-state measurement. Phys. Rev. A 69, 064302 (2004)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (NNSFC) under Grant Nos.12075205 and 11905131.

Funding

Prof. Z. Zhang is supported by NNSFC No.12075205, and B. Ye is supported by NNSFC No.11905131.

Author information

Authors and Affiliations

Authors

Contributions

Prof. Z. Zhang conceived and supervised the project. All authors reviewed the manuscript.

Corresponding author

Correspondence to Zhanjun Zhang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Deng, L., Zhang, L. et al. Efficient Tripartite Quantum Operation Sharing with Five-Qubit Absolutely Maximally Entangled State. Int J Theor Phys 60, 2583–2591 (2021). https://doi.org/10.1007/s10773-020-04684-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-020-04684-x

Keywords

Navigation