Skip to main content
Log in

Quantum Secret Sharing Protocol Using Maximally Entangled Multi-qudit States

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The purpose of this paper is to develop a (Nk) threshold quantum secret sharing (QSS) scheme by using entangled multi-qudit states shared between N qudits such that (kNk). We introduce first multi-qudit separable states of a Hilbert space associated with a disconnected multi-qudit system. The entangled multi-qudit states are obtained from disconnected states by means of a unitary interaction operator governing the evolution of the multi-qudit system, where the pairwise interaction establishes links between qudits. The generated entangled states are chosen to be maximally entangled with respect to a specific bi-partition (\(A_{2} \bigcup A_{1} \)) with k = |A2|≤|A1| = (Nk) of the whole system such that the von Neumann entropy \(S(\rho _{A_{2}})\) is maximal. The maximally entanglement property with respect to the splitting (\(A_{2} \bigcup A_{1} \)) of this N-qudit entangled states will be used by a dealer (D) to share an encoded quantum secret with (N − 1) other players, such that at least the (Nk) specified players belonging to A1 have to cooperate jointly to get the complete information about the secret.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2019)

    MATH  Google Scholar 

  2. Vedral, V.: The role of relative entropy in quantum information theory. Rev. Mod. Phys. 74(1), 197 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Quantum entanglement. Rev. Mod. Phys. 81(2), 865 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  4. Gühne, O., Tóth, G.: Entanglement detection. Phys. Rep. 474(1-6), 1–75 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  5. Coffman, V., Kundu, J., Wootters, W.K.: Distributed entanglement. Phys. Rev. A 61(5), 052306 (2000)

    Article  ADS  Google Scholar 

  6. Ganczarek, W., Kuś, M., Życzkowski, K.: Barycentric measure of quantum entanglement. Phys. Rev. A 85(3), 032314 (2012)

    Article  ADS  Google Scholar 

  7. Brierley, S., Higuchi, A.: On maximal entanglement between two pairs in four-qubit pure states. J. Phys. A Math. Theor. 40(29), 8455 (2007)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  8. Facchi, P., Florio, G., Parisi, G., Pascazio, S.: Maximally multipartite entangled states. Phys. Rev. A 77(6), 060304 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  9. Gour, G., Wallach, N.R.: All maximally entangled four-qubit states. J. Math. Phys. 51(11), 112201 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Scott, A.J.: Multipartite entanglement, quantum-error-correcting codes, and entangling power of quantum evolutions. Phys. Rev. A 69(5), 052330 (2004)

    Article  ADS  Google Scholar 

  11. Arnaud, L., Cerf, N.J.: Exploring pure quantum states with maximally mixed reductions. Phys. Rev. A 87(1), 012319 (2013)

    Article  ADS  Google Scholar 

  12. Goyeneche, D., Życzkowski, K.: Genuinely multipartite entangled states and orthogonal arrays. Phys. Rev. A 90(2), 022316 (2014)

    Article  ADS  Google Scholar 

  13. Mansour, M., Daoud, M.: K-uniform maximally mixed states from multi-qudit phase states. Mod. Phys. Lett. A 34(19), 1950151 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83(3), 648 (1999)

    Article  ADS  Google Scholar 

  16. Gottesman, D.: Theory of quantum secret sharing. Phys. Rev. A 61(4), 042311 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  17. Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59(1), 162 (1999)

    Article  ADS  Google Scholar 

  18. Zbinden, H., Gisin, N.: Quantum secret sharing using pseudo-GHZ states. arXiv:quant-ph/9912035 (1999)

  19. Smith, A.D.: Quantum secret sharing for general access structures. arXiv:quant-ph/0001087 (2000)

  20. Shi, H., Li, F.G., Chen, R.-K., Zhang, Y.-Y., Jian: . Quantum Inf. Process 13, 21–31 (2014)

    Article  ADS  Google Scholar 

  21. Hsu, J.L., Chong, S.K., Hwang, T., Tsai, C.W.: Dynamic quantum secret sharing. Quantum Inf. Process 12(1), 331–344 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Li, Q., Long, D.Y., Chan, W.H., Qiu, D.W.: Sharing a quantum secret without a trusted party. Quantum Inf. Process 10(1), 97–106 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  23. Liu, L.L., Tsai, C.W., Hwang, T.: Quantum secret sharing using symmetric W state. Int. J. Theor. Phys. 51(7), 2291–2306 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Sun, Y., Xu, S.W., Chen, X.B., Niu, X.X., Yang, Y.X.: Expansible quantum secret sharing network. Quantum Inf. Process 12(8), 2877–2888 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Tseng, H.Y., Tsai, C.W., Hwang, T., Li, C.M.: Quantum secret sharing based on quantum search algorithm. Int. J. Theor. Phys. 51(10), 3101–3108 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Hein, M., Dür, W., Eisert, J., Raussendorf, R., Nest, M., Briegel, H.J.: Entanglement in graph states and its applications. arXiv:quant-ph/0602096 (2006)

  27. Markham, D., Sanders, B.C.: Graph states for quantum secret sharing. Phys. Rev. A 78(4), 042309 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Keet, A., Fortescue, B., Markham, D., Sanders, B.C.: Quantum secret sharing with qudit graph states. Phys. Rev. A 82(6), 062315 (2010)

    Article  ADS  Google Scholar 

  29. Helwig, W., Cui, W., Latorre, J.I., Riera, A., Lo, H.K.: Absolute maximal entanglement and quantum secret sharing. Phys. Rev. A 86(5), 052335 (2012)

    Article  ADS  Google Scholar 

  30. Helwig, W., Cui, W.: Absolutely maximally entangled states: existence and applications. arXiv:1306.2536 (2013)

  31. Tittel, W., Zbinden, H., Gisin, N.: Experimental demonstration of quantum secret sharing. Phys. Rev. A 63(4), 042301 (2001)

    Article  ADS  Google Scholar 

  32. Imai, H., Müller-Quade, J., Nascimento, A.C., Tuyls, P., Winter, A.: A quantum information theoretical model for quantum secret sharing schemes. arXiv:quant-ph/0311136 (2003)

  33. Wei, K.J., Ma, H.Q., Yang, J.H.: Experimental circular quantum secret sharing over telecom fiber network. Opt. Express 21(14), 16663–16669 (2013)

    Article  ADS  Google Scholar 

  34. Hao, L., Wang, C., Long, G.L.: Quantum secret sharing protocol with four state Grover algorithm and its proof-of-principle experimental demonstration. Opt. Appl. 284(14), 3639–3642 (2011)

    ADS  Google Scholar 

  35. Bogdanski, J., Rafiei, N., Bourennane, M.: Experimental quantum secret sharing using telecommunication fiber. Phys. Rev. A 78(6), 062307 (2008)

    Article  ADS  Google Scholar 

  36. Marin, A., Markham, D.: Practical sharing of quantum secrets over untrusted channels. arXiv:1410.0556 (2014)

  37. Schmid, C., Trojek, P., Bourennane, M., Kurtsiefer, C., Żukowski, M., Weinfurter, H.: Experimental single qubit quantum secret sharing. Phys. Rev. Lett. 95(23), 230505 (2005)

    Article  ADS  Google Scholar 

  38. Gaertner, S., Kurtsiefer, C., Bourennane, M., Weinfurter, H.: Experimental demonstration of four-party quantum secret sharing. Phys. Rev. Lett. 98(2), 020503 (2007)

    Article  ADS  Google Scholar 

  39. Lu, H., Zhang, Z., Chen, L.-K., Li, Z.-D., Liu, C., Li, L., Liu, N.-L., Ma, X., Chen, Y.-A., Wei, J.: Secret sharing of a quantum state. Phys. Rev. Lett. 117(3), 030501 (2016)

    Article  ADS  Google Scholar 

  40. Wu, L. -A., Lidar, D.A.: . J. Math. Phys. 43, 4506 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  41. Achkir, O., Daoud, M., Mansour, M.: Generalized graph states and mutually unbiased bases from multi-qudits phase states. Mod. Phys. Lett. B 31(17), 1750183 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  42. Mansour, M., Daoud, M.: Stabilizer codes and equientangled bases from phase states. Int. J. Mod. Phys. B 31(20), 1750132 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  43. Daoud, M., Kibler, M.R.: Phase operators, temporally stable phase states, mutually unbiased bases and exactly solvable quantum systems. J. Phys. A Math. Theor. 43(11), 115303 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  44. Daoud, M., Kibler, M.R.: Phase operators, phase states and vector phase states for SU 3 and SU 2, 1. J. Math. Phys. 52(8), 082101 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Mansour, M., Daoud, M., Dahbi, Z.: Randomized entangled mixed states from phase states. Int. J. Theor. Phys. 59(3), 895–907 (2020)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mansour.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mansour, M., Dahbi, Z. Quantum Secret Sharing Protocol Using Maximally Entangled Multi-qudit States. Int J Theor Phys 59, 3876–3887 (2020). https://doi.org/10.1007/s10773-020-04639-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-020-04639-2

Keywords

Navigation