Skip to main content
Log in

Quantum secret sharing and Mermin operator

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum secret sharing is well known as a method for players to share a classical secret for secret sharing in quantum mechanical ways. Most of the results associated with quantum secret sharing are based on pure multipartite entangled states. In reality, however, it is difficult for players to share a pure entangled state, although they can share a state close to the state. Thus, it is necessary to study how to perform the quantum secret sharing based on a general multipartite state. We here present a quantum secret sharing protocol on an N-qubit state close to a pure N-qubit Greenberger–Horne–Zeilinger state. In our protocol, N players use an inequality derived from the Mermin inequality to check secure correlation of classical key bits for secret sharing. We show that if our inequality holds then every legitimate player can have key bits with positive key rate. Therefore, for sufficiently many copies of the state, the players can securely share a classical secret with high probability by means of our protocol.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Blakley, G.R.: Safeguarding cryptographic keys. Proc. Natl. Comput. Conf. 48, 313 (1979)

    Google Scholar 

  2. Shamir, A.: How to share a secret. Commun. ACM 22, 612 (1979)

    Article  MathSciNet  Google Scholar 

  3. Hillery, M., Bužek, V., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59, 1829 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  4. Greenberger, D.M., Horne, M.A., Zeilinger, A.: Going Beyond Bell’s Theorem. In: Bell’s Theorem, Quantum Theory, and Conceptions of the Universe ed M Kafatos (Dordrecht: Kluwer) p. 69 (1989)

    Chapter  Google Scholar 

  5. Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59, 162 (1999)

    Article  ADS  Google Scholar 

  6. Gottesman, D.: Theory of quantum secret sharing. Phys. Rev. A 61, 042311 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  7. Xiao, L., Long, G.L., Deng, F.G., Pan, J.W.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69, 052307 (2004)

    Article  ADS  Google Scholar 

  8. jun Zhang, Z., xiao Man, Z.: Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A 72, 022303 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  9. Qin, S.J., Gao, F., Wen, Q.Y., Zhu, F.C.: Cryptanalysis of the Hillery–Bužek–Berthiaume quantum secret-sharing protocol. Phys. Rev. A 76, 062324 (2007)

    Article  ADS  Google Scholar 

  10. Schauer, S., Huber, M., Hiesmayr, B.C.: Experimentally feasible security check for n-qubit quantum secret sharing. Phys. Rev. A 82, 062311 (2010)

    Article  ADS  Google Scholar 

  11. Marin, A., Markham, D.: Equivalence between sharing quantum and classical secrets and error correction. Phys. Rev. A 88, 042332 (2013)

    Article  ADS  Google Scholar 

  12. Kogias, I., Xiang, Y., He, Q., Adesso, G.: Unconditional security of entanglement-based continuous-variable quantum secret sharing. Phys. Rev. A 95, 012315 (2017)

    Article  ADS  Google Scholar 

  13. Wei, C.Y., Cai, X.Q., Liu, B., Wang, T.Y., Gao, F.: A generic construction of quantum-oblivious-key-transfer-based private query with ideal database security and zero failure. IEEE Trans. Comput. 67, 2 (2018)

    Article  MathSciNet  Google Scholar 

  14. Tittel, W., Zbinden, H., Gisin, N.: Experimental demonstration of quantum secret sharing. Phys. Rev. A 63, 042301 (2001)

    Article  ADS  Google Scholar 

  15. Lance, A.M., Symul, T., Bowen, W.P., Sanders, B.C., Lam, P.K.: Tripartite quantum state sharing. Phys. Rev. Lett. 92, 177903 (2004)

    Article  ADS  Google Scholar 

  16. Chen, Y.A., Zhang, A.N., Zhao, Z., Zhou, X.Q., Lu, C.Y., Peng, C.Z., Yang, T., Pan, J.W.: Experimental quantum secret sharing and third-man quantum cryptography. Phys. Rev. Lett. 95, 200502 (2005)

    Article  ADS  Google Scholar 

  17. Gaertner, S., Kurtsiefer, C., Bourennane, M., Weinfurter, H.: Experimental demonstration of four-party quantum secret sharing. Phys. Rev. Lett. 98, 020503 (2007)

    Article  ADS  Google Scholar 

  18. Bell, B.A., Markham, D., Herrera-Mart, D.A., Marin, A., Wadsworth, W.J., Rarity, J.G., Tame, M.S.: Experimental demonstration of graph-state quantum secret sharing. Nat. Commun. 5, 5480 (2014)

    Article  ADS  Google Scholar 

  19. Chen, K., Lo, H.K.: Multi-partite quantum cryptographic protocols with noisy GHZ states. Q. Inf. Comput. 7, 689 (2007)

    MathSciNet  MATH  Google Scholar 

  20. Lee, S., Park, J.: Three methods to distill multipartite entanglement over bipartite noisy channels. Phys. Lett. A 372, 3157 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  21. Dür, W., Cirac, J.I., Tarrach, R.: Separability and distillability of multiparticle quantum systems, separability and distillability of multiparticle quantum systems. Phys. Rev. Lett. 83, 3562 (1999)

    Article  ADS  Google Scholar 

  22. Mermin, N.D.: Extreme quantum entanglement in a superposition of macroscopically distinct states. Phys. Rev. Lett. 65, 1838 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  23. Belinski, A.V., Klyshko, D.N.: Interference of light and Bell’s theorem. Phys. Usp. 36, 653 (1993)

    Article  ADS  Google Scholar 

  24. Werner, R.F.: Werner state. Phys. Rev. A 40, 4277 (1989)

    Article  ADS  Google Scholar 

  25. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information, Quantum Computation and Quantum Information. Cambridge University, Cambridge (2000)

    MATH  Google Scholar 

  26. Devetak, I., Winter, A.: Distillation of secret key and entanglement from quantum states. Proc. R. Soc. A 461, 207 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  27. Arnon-Friedman, R., Renner, R., Vidick, T.: arXiv:1607.01797

  28. Dupuis, F., Fawzi, O., Renner, R.: arXiv:1607.01796

Download references

Acknowledgements

This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science and ICT (NRF-2016R1A2B4014928).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soojoon Lee.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choi, M., Lee, Y. & Lee, S. Quantum secret sharing and Mermin operator. Quantum Inf Process 17, 258 (2018). https://doi.org/10.1007/s11128-018-2035-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-018-2035-2

Keywords

Mathematics Subject Classification

Navigation