Skip to main content
Log in

Optimal Dense Coding in a Two-qubit Heisenberg XXZ Model with Decoherence

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Optimal dense coding of a two-qubit anisotropic Heisenberg XXZ model under decoherence is investigated with the Werner state as the initial state. With the time evolution, the dense coding capacity χ oscillates firstly, and then reaches a stable value 1 in the long time limit, whatever the values of other parameters are. Our results imply that the purity r of the initial state have a strong influence on the initial value of the optimal dense coding capacity. When the purity r of the initial state increase, the initial value of dense coding capacity increase. Besides, the coupling coefficient and Dzyaloshinski-Moriya(DM) both have strong influence on the frequency of the oscillation and the area of t that the optimal dense coding is feasible(tf). Interestingly, the decoherence rate γ can strongly affect the dense coding capacity. With the decreasing of γ, the area of tf(which will make the dense coding capacity greater than 1) becomes more wider. When γ = 0, it will still allows a valid dense coding. So we can adjust the parameters to get a optimal dense coding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Bennett, C.H., Wiesner, S.J.: Phys. Rev. Lett. 69, 2881 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  2. Barenco, A., Ekert, A.K.: J. Mod. Opt. 42, 1253 (1995)

    Article  ADS  Google Scholar 

  3. Wang, Z., Tian, L.J., Cao, W.Z.: Int. J. Quan. Inf. 8, 1213 (2010)

    Article  Google Scholar 

  4. Mattle, K., Weinfurter, H., Kwiat, P.G., Zeilinger, A.: Phs. Rev. Lett. 76, 4656 (1996)

    Article  ADS  Google Scholar 

  5. Hiroshima, T.: J. Phys. A: Math. Theor. 34, 6907 (2001)

    Article  ADS  Google Scholar 

  6. Bose, S., Plenio, M.B., Vedral, V.: J. Mod. Opt. 47, 291 (2000)

    Article  ADS  Google Scholar 

  7. Holevo, A.S.: Probl. Inf. Transm. 9, 177 (1973)

    Google Scholar 

  8. Holevo, A.S.: IEEE Trans. Inf. Theory. 44, 269 (1998)

    Article  Google Scholar 

  9. Schumacher, B., Westmorland, M.D.: Phys. Rev. A 56, 131 (1997)

    Article  ADS  Google Scholar 

  10. Zhang, G.F.: Phys. Scr. 79, 015001 (2009)

    Article  ADS  Google Scholar 

  11. Zhang, B.B., Yang, G.H.: Int. J. Theor. Phys. 55, 4731 (2016)

    Article  Google Scholar 

  12. Liu, W.M., Fan, W.B., Zheng, W.M., Liang, J.Q., Chui, S.T.: Phys. Rev. Lett. 88, 170408 (2002)

    Article  ADS  Google Scholar 

  13. Zhou, L., Song, H.S., Guo, Y.Q., Li, C.: Phys. Rev. A 68, 024301 (2003)

    Article  ADS  Google Scholar 

  14. Zhang, G.F., Jiang, Z.T., Abliz, A.: Annals of Phys. 326, 867 (2011)

    Article  ADS  Google Scholar 

  15. Zhang, G.F., Li, S.S.: Phys. Rev. A 72, 034302 (2005)

    Article  ADS  Google Scholar 

  16. Li, W.L., Chen, J.B., Wang, X.L., Li, C.: Int. J. Theor. Phys. 54, 100 (2015)

    Article  Google Scholar 

  17. Zhang, G.F.: Phys. Rev.A 75, 034304 (2007)

    Article  ADS  Google Scholar 

  18. Christandl, M., Datta, N., Ekert, A., Landahl, A.J.: Phys. Rev. Lett. 92, 187902 (2004)

    Article  ADS  Google Scholar 

  19. Abliz, A., Gao, H.J., Xie, X.C., Wu, Y.S., Liu, W.M.: Phys. Rev. A 74, 052105 (2006)

    Article  ADS  Google Scholar 

  20. Li, L., Yang, G.H.: Chin. Phys. B 23, 070306 (2014)

    Article  ADS  Google Scholar 

  21. Loss, D., Divincenzo, D.P.: Phys. Rev. A 57, 120 (1998)

    Article  ADS  Google Scholar 

  22. Maziero, J., Celeri, L.C., Serra, R.M., Vedral, V.: Phys. Rev. A 80, 044102 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  23. Fanchinietal, F.F., Werlang, T., Brasil, A., Arruda, L.G.E., Caldeira, A.O.: Phys. Rev. A 81, 052107 (2010)

    Article  ADS  Google Scholar 

  24. Lindblad, G.: Commun. Math. Phys. 48, 199 (1976)

    Article  Google Scholar 

  25. Yang, Q., Yang, M., Li, D.C., Cao, Z.L.: Int. J. Theor. Phys. 51, 2160 (2012)

    Article  Google Scholar 

Download references

Acknowledgments

This project was supported by the Natural Science Foundation for Young Scientists of Shanxi Province, China (Grant No. 2012021003-3) and the special funds of the National Natural Foundation of China (Grant No. 11247247).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiang-Fu Jia or Guo-Hui Yang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, YQ., Zhao, X., Jia, XF. et al. Optimal Dense Coding in a Two-qubit Heisenberg XXZ Model with Decoherence. Int J Theor Phys 59, 1357–1363 (2020). https://doi.org/10.1007/s10773-019-04316-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04316-z

Keywords

Navigation