Skip to main content
Log in

Quantum Dense Coding About a Two-Qubit Heisenberg XYZ Model

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

By taking into account the nonuniform magnetic field, the quantum dense coding with thermal entangled states of a two-qubit anisotropic Heisenberg XYZ chain are investigated in detail. We mainly show the different properties about the dense coding capacity (χ) with the changes of different parameters. It is found that dense coding capacity χ can be enhanced by decreasing the magnetic field B, the degree of inhomogeneity b and temperature T, or increasing the coupling constant along z-axis J z . In addition, we also find χ remains the stable value as the change of the anisotropy of the XY plane Δ in a certain temperature condition. Through studying different parameters effect on χ, it presents that we can properly turn the values of B, b, J z , Δ or adjust the temperature T to obtain a valid dense coding capacity (χ satisfies χ > 1). Moreover, the temperature plays a key role in adjusting the value of dense coding capacity χ. The valid dense coding capacity could be always obtained in the lower temperature-limit case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Belavkin, V.P., Hirota, O., Hudson, R.R.: Quantum Communication and Measurement. Plenum, New York (1995)

    Book  MATH  Google Scholar 

  2. Hirota, O., Holevo, A.S., Caves, C.M.: Quantum Communication, Computation and Measurement. Plenum, New York (1997)

    Book  MATH  Google Scholar 

  3. Alber, G., Beth, T., Horodecki, P., Horodecki, R., Horodecki, M., Weinfurther, H., Werner, R., Zeilinger, A.: Quantum Information. Springer, Berlin (2002)

    MATH  Google Scholar 

  4. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  5. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  6. Zhang, B.B., Yang, G.H.: Int. J. Theor. Phys. 55, 4731 (2016)

    Article  Google Scholar 

  7. Wang, R., Yang, G.H.: Int. J. Theor. Phys. 53, 3948 (2014)

    Article  Google Scholar 

  8. Bennett, C.H., Wiesner, S.J.: Phys. Rev. Lett. 69, 2881 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  9. Bareno, A., Ekert, A.: J. Mod. Opt. 42, 1253 (1995)

    Article  ADS  Google Scholar 

  10. Braunstein, S.L., Kimble, H.J.: Phys. Rev. A 61, 042302 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  11. Bose, S., Plenio, M.B., Vedral, V.: J. Mod. Opt. 47, 291 (2000)

    Article  ADS  Google Scholar 

  12. Mattle, K., Weinfurter, H., Kwiat, P.G., Zeilinger, A.: Phys. Rev. Lett. 76, 4656 (1996)

    Article  ADS  Google Scholar 

  13. Holevo, A.S.: Probl. Inf. Transm. 9(3), 177–183 (1973)

    Google Scholar 

  14. holevo, A.S.: Probl. Inf. Transm. 15(4), 247–253 (1979)

    Google Scholar 

  15. Holevo, A.S.: IEEE Trans. Inf. Theory 44, 269 (1998)

    Article  Google Scholar 

  16. Schumacher, B., Westmoreland, M.D.: Phys. Rev. A 56, 131 (1997)

    Article  ADS  Google Scholar 

  17. Ekert, A.K.: Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  18. Wang, X.: Phys. Rev. A 64, 012313 (2001)

    Article  ADS  Google Scholar 

  19. Kamta, G.L., Starace, A.F.: Phys. Rev. Lett. 88, 107901 (2002)

    Article  ADS  Google Scholar 

  20. Zhang, G.F., Li, S.S.: Phys. Rev. A 72, 034302 (2005)

    Article  ADS  Google Scholar 

  21. Loss, D., DiVincenzo, D.P.: Phys. Rev. A 57, 120 (1998)

    Article  ADS  Google Scholar 

  22. Burkard, G., Loss, D., DiVincenzo, D.P.: Phys. Rev. B 59, 2070 (1999)

    Article  ADS  Google Scholar 

  23. Glaser, U., Büttner, H., Fehske, H.: Phys. Rev. A 68, 032318 (2003)

    Article  ADS  Google Scholar 

  24. Abliz, A., Cai, J.T., Zhang, G.F., Jin, G.S.: Mol. Opt. Phys. 42, 215503 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This project was supported by the Natural Science Foundation for Young Scientists of Shanxi Province, China (Grant No. 2012021003-3) and the Special Funds of the National Natural Science Foundation of China (Grant No. 11247247).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Hui Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, HY., Yang, GH. Quantum Dense Coding About a Two-Qubit Heisenberg XYZ Model. Int J Theor Phys 56, 2803–2810 (2017). https://doi.org/10.1007/s10773-017-3445-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-017-3445-0

Keywords

Navigation