Skip to main content
Log in

Deterministic Controlled Remote State Preparation of Real-Parameter Multi-Qubit States via Maximal Slice States

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

By exploiting three-qubit entangled states and appropriate measurement basis, we propose efficient protocols for deterministic controlled remote state preparation of arbitrary real-parameter multi-qubit states, in which the maximal slice states are used as quantum channel. The successful probability of our schemes can reach up to 100% by using multi-qubit mutually orthogonal measurement basis without the introduction of auxiliary particles. Based on the implementation schemes for preparing arbitrary two- and three-qubit states with real parameters, we have derived the controlled remote state preparation protocols for arbitrary real-parameter multi-qubit states.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dong, C., Zhao, S.H., Zhao, W.H.: Analysis of measurement-device-independent quantum key distribution under asymmetric channel transmittance efficiency. Quantum. Inf. Process. 13, 2525 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  2. Dong, C., Zhao, S.H., Zhang, N., et al.: Measurement-device-independent quantum key distribution with odd coherent state. Acta. Phys. Sin. 61, 1246 (2014)

    Google Scholar 

  3. Dong, C., Zhao, S.H., Shi, L., et al.: Measurement-device-independent quantum key distribution with pairs of vector vortex beams. Phys. Rev. A 93, 032320 (2016)

    ADS  Google Scholar 

  4. Peters, N.A., Barreiro, J.T., Goggin, M.E., et al.: Remote state preparation: arbitrary remote control of photon polarizations for quantum communication. Phys. Rev. Lett. 94, 150502 (2005)

    ADS  Google Scholar 

  5. Dai, H.Y., Chen, P.X., Zhang, M., et al.: Remote preparation of an entangled two-qubit state with three parties. Chin. Phys. B 17, 27 (2008)

    ADS  Google Scholar 

  6. Bennett, C.H., Brassard, G., Crepeau, C., et al.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895 (1993)

    ADS  MathSciNet  MATH  Google Scholar 

  7. Xia, Y., Song, J., Lu, P.M., et al.: Effective quantum teleportation of an atomic state between two cavities with the cross Kerr nonlinearity by interference of polarized photons. J. Appl. Phys. 109, 103111 (2011)

    ADS  Google Scholar 

  8. Lo, H.K.: Classical communication cost in distributed quantum information processing - a generalization of quantum communication complexity. Phys. Rev. A 62, 12313 (2000)

    ADS  Google Scholar 

  9. Bouwmeester, D., Pan, J.W., Mattle, K., et al.: Experimental quantum teleportation. Nature 390, 575 (1997)

    ADS  MATH  Google Scholar 

  10. Dai, H.Y., Zhang, M., Kuang, L.M.: Teleportation of the three-level three-particle entangled state and classical communication cost. Phys. A 387, 3811 (2008)

    Google Scholar 

  11. Wei, J.H., Dai, H.Y., Zhang, M.: A new scheme for probabilistic teleportation and its potential applications. Commun. Theor. Phys. 60, 651 (2013)

    ADS  MATH  Google Scholar 

  12. Wang, D., Zha, X.W., Lan, Q.: Joint remote state preparation of arbitrary two-qubit state with six-qubit state. Opt. Commun. 284, 5853 (2011)

    ADS  Google Scholar 

  13. Jiang, M., Dong, D.: A recursive two-phase general protocol on deterministic remote preparation of a class of multi-qubit states. J. Phys. B 45, 205506 (2012)

    ADS  Google Scholar 

  14. Jiang, M., Jiang, F.: Deterministic joint remote preparation of arbitrary multi-qudit states. Phys. Lett. A 377, 2524 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  15. Dai, H.Y., Zhang, M., Kuang, L.M.: Classical communication cost and remote preparation of multi-qubit with three-party. Commun. Theor. Phys. 50, 73 (2008)

    ADS  MATH  Google Scholar 

  16. Xiao, X.Q., Liu, J.M., Zeng, G.H.: Joint remote state preparation of arbitrary two- and three-qubit states. J. Phys. B 44, 075501 (2011)

    ADS  Google Scholar 

  17. Wei, J.H., Shi, L., Ma, L.H., et al.: Remote preparation of an arbitrary multi-qubit state via two-qubit entangled states. Quantum. Inf. Process. 16, 260 (2017)

    ADS  MathSciNet  MATH  Google Scholar 

  18. Wang, Z.Y., Liu, Y.M., Zuo, X.Q., et al.: Controlled remote state preparation. Commun. Theor. Phys. 52, 235 (2009)

    ADS  MATH  Google Scholar 

  19. Hou, K., Wang, J., Yuan, H., et al.: Multiparty-controlled remote preparation of two-particle state. Commun. Theor. Phys. 52, 848 (2009)

    ADS  MATH  Google Scholar 

  20. Chen, X.B., Ma, S.Y., Yuan, S.Y., et al.: Controlled remote state preparation of arbitrary two and three qubit states via the Brown state. Quantum Inf. Process. 11, 1653 (2012)

    ADS  MathSciNet  MATH  Google Scholar 

  21. Wang, C., Zeng, Z., Li, X.H.: Controlled remote state preparation via partially entangled quantum channel. Quantum Inf. Process. 14, 1077 (2015)

    ADS  MathSciNet  MATH  Google Scholar 

  22. Wei, J.H., Shi, L., Xu, Z.Y., et al.: Probabilistic controlled remote state preparation of an arbitrary two-qubit state via partially entangled states with multi parties. Int. J. Quant. Inf. 16, 1850001 (2018)

    MathSciNet  MATH  Google Scholar 

  23. Liao, Y.M., Zhou, P., Qin, X.C., et al.: Controlled remote preparing of an arbitrary 2-Qudit State with two-particle entanglements and positive operator-valued measure. Commun. Theor. Phys. 61, 315 (2014)

    ADS  MathSciNet  MATH  Google Scholar 

  24. Li, Z., Zhou, P.: Probabilistic multiparty-controlled remote preparation of an arbitrary m-qubit state via positive operator-valued measurement. Int. J. Quantum Inf. 10, 1250062 (2012)

    MathSciNet  MATH  Google Scholar 

  25. Wang, D., Ye, L.: Multi party-controlled joint remote preparation. Quantum Inf. Process. 12, 3223 (2013)

    ADS  MathSciNet  MATH  Google Scholar 

  26. Wang, D., Huang, A.J., Sun, W.Y., et al.: Practical single-photon-assisted remote state preparation with non-maximally entanglement. Quantum Inf. Process. 15, 3367 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  27. Wei, J.H., Shi, L., Luo, J.W., et al.: Optimal remote preparation of arbitrary multi-qubit real-parameter states via two-qubit entangled states. Quantum Inf. Process. 17, 141 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

  28. Louis, S.G.R., Nemoto, K., Munro, W.J., et al.: Weak nonlinearities and cluster states. Phys. Rev. A 75, 042323 (2007)

    ADS  Google Scholar 

  29. Lee, J., Park, J., Lee, S., et al.: Scalable cavity-QED-based scheme of generating entanglement of atoms and of cavity fields. Phys. Rev. A 77, 32327 (2008)

    ADS  Google Scholar 

  30. Zheng, A., Li, J., Yu, R., et al.: Generation of Greenberger-Horne-Zeilinger state of distant diamond nitrogen-vacancy centers via nanocavity input-output process. Optics Express. 20, 16902 (2012)

    ADS  Google Scholar 

  31. Lin, Y., Gaebler, J.P., Reiter, F., et al.: Preparation of entangled states through Hilbert space engineering. Phys. Rev. Lett. 117, 14 (2016)

    Google Scholar 

  32. Liu, J., Mo, Z.W., Sun, S.Q.: Controlled dense coding using the maximal slice states. Int. J. Theor. Phys. 55, 2182 (2016)

    MATH  Google Scholar 

  33. Wei, J.H., Shi, L., Zhao, S.H., et al.: Multi-parties controlled dense coding via maximal slice states and the physical realization using the optical elements. Int. J. Theor. Phys. 57, 1479 (2018)

    MathSciNet  MATH  Google Scholar 

  34. Nielsen, M. A., Chuang, I.L.: Quantum computation and quantum information. Cambridge University Press, Cambridge (2011)

    MATH  Google Scholar 

  35. Bonato, C., Haupt, F., Oemrawsingh, S., et al.: CNOT and Bell-state analysis in the weak-coupling cavity QED regime. Phys. Rev. Lett. 104, 160503 (2010)

    ADS  Google Scholar 

  36. Andrianov, S.N., Arslanov, N.M., Gerasimov, K.I., et al.: CNOT gate on reverse photon modes in ring cavity (2019)

  37. Riebe, M., Kim, K., Schindler, P., et al.: Process tomography of ion trap quantum gates. Phys. Rev. Lett. 97, 220407 (2006)

    ADS  Google Scholar 

  38. Ai, L.Y., Yang, J., Zhang, Z.M.: Generation of c-NOT gate, swap gate and phase gate based on a two-dimensional ion trap. Acta Phys. Sin. 57, 5589 (2008)

    Google Scholar 

  39. Labs, H.P.: A near deterministic linear optical CNOT gate. Physics (2009)

  40. Shehab, O.: All optical XOR, CNOT gates with initial insight for quantum computation using linear optics. Proc. SPIE Int. Soc. Opt. Eng. 8400, 13 (2012)

    ADS  Google Scholar 

  41. Peters, N.A., Barreiro, J.T., Goggin, M.E., et al.: Arbitrary remote state preparation of photon polarization. In: Quantum Electronics & Laser Science Conference. IEEE (2005)

  42. Lan, Z., Kuang, L.M.: Linear optical implementation for quantum teleportation of unknown two-qubit entangled states. Chin. Phys. Lett. 21, 2101 (2004)

    ADS  Google Scholar 

  43. Zhang, Q., Goebel, A., Wagenknecht, C., et al.: Experimental quantum teleportation of a two-qubit composite system. Nature. Phys. 2, 678 (2006)

    ADS  Google Scholar 

  44. Wang, Z.Y.: Joint remote preparation of a multi-qubit GHZ-class state via bipartite entanglements. Int. J. Quantum Inf. 9, 809 (2011)

    MathSciNet  MATH  Google Scholar 

  45. Wei, J.H., Shi, L., Luo, J.W., et al.: Optimal remote preparation of arbitrary multi-qubit real-parameter states via two-qubit entangled states. Quantum Inf. Process. 17, 6 (2018)

    ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

This work is supported by the Program for National Natural Science Foundation of China (Grant No. 61803382), Natural Science Basic Research Plan in Shaanxi Province of China (Program No. 2018JQ6020) and China Postdoctoral Science Foundation Funded Project (Project No. 2018M643869).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kaihang Zhou.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix: A

In Step 2 of Section 3, we present the state of particles (B1,C1,B2,C2,B3,C3) when the measurement result of particles (A1,A2,A3) is |Γ1〉. For the sake of the completeness, the state of particles (B1,C1,B2,C2,B3,C3) in terms of other measurement results |Γk〉 (k = 0, 2, 3,⋯ , 7) are supplemented as follows

$$ \begin{array}{@{}rcl@{}} |\psi_{0}\rangle_{B_{1}C_{1}B_{2}C_{2}B_{3}C_{3}}&=&\langle{\varGamma}_{0}|\psi\rangle_{total} \\ &=&\sum\limits_{|m_{C_{i}}\rangle=|x^{\pm}_{i}\rangle_{C_{i}}}\left( \frac{1}{\sqrt{2}}\right)^{3}P_{x_{1}}P_{x_{2}}P_{x_{3}}\otimes|m_{C_{1}}\rangle\otimes|m_{C_{2}}\rangle\otimes|m_{C_{3}}\rangle \\ &&\otimes\left( a_{0}|000\rangle+(-1)^{\langle x_{3}^{-}|m_{C_{3}}\rangle}a_{1}|001\rangle+(-1)^{\langle x_{2}^{-}|m_{C_{2}}\rangle}a_{2}|010\rangle\right. \\ &&+(-1)^{\langle x_{2}^{-}|m_{C_{2}}\rangle}(-1)^{\langle x_{3}^{-}|m_{C_{3}}\rangle}a_{3}|011\rangle+(-1)^{\langle x_{1}^{-}|m_{C_{1}}\rangle}a_{4}|100\rangle \\ &&+(-1)^{\langle x_{1}^{-}|m_{C_{1}}\rangle}(-1)^{\langle x_{3}^{-}|m_{C_{3}}\rangle}a_{5}|101\rangle +(-1)^{\langle x_{1}^{-}|m_{C_{1}}\rangle}(-1)^{\langle x_{2}^{-}|m_{C_{2}}\rangle}a_{6}|110\rangle \\ &&+\left.(-1)^{\langle x_{1}^{-}|m_{C_{1}}\rangle}(-1)^{\langle x_{2}^{-}|m_{C_{2}}\rangle}(-1)^{\langle x_{3}^{-}|m_{C_{3}}\rangle}a_{7}|111\rangle\right)_{B_{1}B_{2}B_{3}} \end{array} $$
$$ \begin{array}{@{}rcl@{}} |\psi_{2}\rangle_{B_{1}C_{1}B_{2}C_{2}B_{3}C_{3}}&=&\langle{\varGamma}_{2}|\psi\rangle_{total} \\ &=&\sum\limits_{|m_{C_{i}}\rangle=|x^{\pm}_{i}\rangle_{C_{i}}}\left( \frac{1}{\sqrt{2}}\right)^{3}P_{x_{1}}P_{x_{2}}P_{x_{3}}\otimes|m_{C_{1}}\rangle\otimes|m_{C_{2}}\rangle\otimes|m_{C_{3}}\rangle \\ &&\otimes\left( a_{2}|000\rangle-(-1)^{\langle x_{3}^{-}|m_{C_{3}}\rangle}a_{3}|001\rangle-(-1)^{\langle x_{2}^{-}|m_{C_{2}}\rangle}a_{0}|010\rangle\right. \\ &&+(-1)^{\langle x_{2}^{-}|m_{C_{2}}\rangle}(-1)^{\langle x_{3}^{-}|m_{C_{3}}\rangle}a_{1}|011\rangle+(-1)^{\langle x_{1}^{-}|m_{C_{1}}\rangle}a_{6}|100\rangle \\ &&+(-1)^{\langle x_{1}^{-}|m_{C_{1}}\rangle}(-1)^{\langle x_{3}^{-}|m_{C_{3}}\rangle}a_{7}|101\rangle -(-1)^{\langle x_{1}^{-}|m_{C_{1}}\rangle}(-1)^{\langle x_{2}^{-}|m_{C_{2}}\rangle}a_{4}|110\rangle \\ &&-\left.(-1)^{\langle x_{1}^{-}|m_{C_{1}}\rangle}(-1)^{\langle x_{2}^{-}|m_{C_{2}}\rangle}(-1)^{\langle x_{3}^{-}|m_{C_{3}}\rangle}a_{5}|111\rangle\right)_{B_{1}B_{2}B_{3}} \end{array} $$
$$ \begin{array}{@{}rcl@{}} |\psi_{3}\rangle_{B_{1}C_{1}B_{2}C_{2}B_{3}C_{3}}&=&\langle{\varGamma}_{3}|\psi\rangle_{total} \\ &=&\sum\limits_{|m_{C_{i}}\rangle=|x^{\pm}_{i}\rangle_{C_{i}}}\left( \frac{1}{\sqrt{2}}\right)^{3}P_{x_{1}}P_{x_{2}}P_{x_{3}}\otimes|m_{C_{1}}\rangle\otimes|m_{C_{2}}\rangle\otimes|m_{C_{3}}\rangle \\ &&\otimes\left( a_{3}|000\rangle+(-1)^{\langle x_{3}^{-}|m_{C_{3}}\rangle}a_{2}|001\rangle-(-1)^{\langle x_{2}^{-}|m_{C_{2}}\rangle}a_{1}|010\rangle\right. \\ &&-(-1)^{\langle x_{2}^{-}|m_{C_{2}}\rangle}(-1)^{\langle x_{3}^{-}|m_{C_{3}}\rangle}a_{0}|011\rangle+(-1)^{\langle x_{1}^{-}|m_{C_{1}}\rangle}a_{7}|100\rangle \\ &&-(-1)^{\langle x_{1}^{-}|m_{C_{1}}\rangle}(-1)^{\langle x_{3}^{-}|m_{C_{3}}\rangle}a_{6}|101\rangle +(-1)^{\langle x_{1}^{-}|m_{C_{1}}\rangle}(-1)^{\langle x_{2}^{-}|m_{C_{2}}\rangle}a_{5}|110\rangle \\ &&-\left.(-1)^{\langle x_{1}^{-}|m_{C_{1}}\rangle}(-1)^{\langle x_{2}^{-}|m_{C_{2}}\rangle}(-1)^{\langle x_{3}^{-}|m_{C_{3}}\rangle}a_{4}|111\rangle\right)_{B_{1}B_{2}B_{3}} \end{array} $$
$$ \begin{array}{@{}rcl@{}} |\psi_{4}\rangle_{B_{1}C_{1}B_{2}C_{2}B_{3}C_{3}}&=&\langle{\varGamma}_{4}|\psi\rangle_{total} \\ &=&\sum\limits_{|m_{C_{i}}\rangle=|x^{\pm}_{i}\rangle_{C_{i}}}\left( \frac{1}{\sqrt{2}}\right)^{3}P_{x_{1}}P_{x_{2}}P_{x_{3}}\otimes|m_{C_{1}}\rangle\otimes|m_{C_{2}}\rangle\otimes|m_{C_{3}}\rangle \\ &&\otimes\left( a_{4}|000\rangle-(-1)^{\langle x_{3}^{-}|m_{C_{3}}\rangle}a_{5}|001\rangle-(-1)^{\langle x_{2}^{-}|m_{C_{2}}\rangle}a_{6}|010\rangle\right. \\ &&-(-1)^{\langle x_{2}^{-}|m_{C_{2}}\rangle}(-1)^{\langle x_{3}^{-}|m_{C_{3}}\rangle}a_{7}|011\rangle-(-1)^{\langle x_{1}^{-}|m_{C_{1}}\rangle}a_{0}|100\rangle \\ &&+(-1)^{\langle x_{1}^{-}|m_{C_{1}}\rangle}(-1)^{\langle x_{3}^{-}|m_{C_{3}}\rangle}a_{1}|101\rangle +(-1)^{\langle x_{1}^{-}|m_{C_{1}}\rangle}(-1)^{\langle x_{2}^{-}|m_{C_{2}}\rangle}a_{2}|110\rangle \\ &&+\left.(-1)^{\langle x_{1}^{-}|m_{C_{1}}\rangle}(-1)^{\langle x_{2}^{-}|m_{C_{2}}\rangle}(-1)^{\langle x_{3}^{-}|m_{C_{3}}\rangle}a_{3}|111\rangle\right)_{B_{1}B_{2}B_{3}} \end{array} $$
$$ \begin{array}{@{}rcl@{}} |\psi_{5}\rangle_{B_{1}C_{1}B_{2}C_{2}B_{3}C_{3}}&=&\langle{\varGamma}_{5}|\psi\rangle_{total} \\ &=&\sum\limits_{|m_{C_{i}}\rangle=|x^{\pm}_{i}\rangle_{C_{i}}}\left( \frac{1}{\sqrt{2}}\right)^{3}P_{x_{1}}P_{x_{2}}P_{x_{3}}\otimes|m_{C_{1}}\rangle\otimes|m_{C_{2}}\rangle\otimes|m_{C_{3}}\rangle \\ &&\otimes\left( a_{5}|000\rangle+(-1)^{\langle x_{3}^{-}|m_{C_{3}}\rangle}a_{4}|001\rangle-(-1)^{\langle x_{2}^{-}|m_{C_{2}}\rangle}a_{7}|010\rangle\right. \\ &&+(-1)^{\langle x_{2}^{-}|m_{C_{2}}\rangle}(-1)^{\langle x_{3}^{-}|m_{C_{3}}\rangle}a_{6}|011\rangle-(-1)^{\langle x_{1}^{-}|m_{C_{1}}\rangle}a_{1}|100\rangle \\ &&-(-1)^{\langle x_{1}^{-}|m_{C_{1}}\rangle}(-1)^{\langle x_{3}^{-}|m_{C_{3}}\rangle}a_{0}|101\rangle -(-1)^{\langle x_{1}^{-}|m_{C_{1}}\rangle}(-1)^{\langle x_{2}^{-}|m_{C_{2}}\rangle}a_{3}|110\rangle \\ &&+\left.(-1)^{\langle x_{1}^{-}|m_{C_{1}}\rangle}(-1)^{\langle x_{2}^{-}|m_{C_{2}}\rangle}(-1)^{\langle x_{3}^{-}|m_{C_{3}}\rangle}a_{2}|111\rangle\right)_{B_{1}B_{2}B_{3}} \end{array} $$
$$ \begin{array}{@{}rcl@{}} |\psi_{6}\rangle_{B_{1}C_{1}B_{2}C_{2}B_{3}C_{3}}&=&\langle{\varGamma}_{6}|\psi\rangle_{total} \\ &=&{\sum}_{|m_{C_{i}}\rangle=|x^{\pm}_{i}\rangle_{C_{i}}}\left( \frac{1}{\sqrt{2}}\right)^{3}P_{x_{1}}P_{x_{2}}P_{x_{3}}\otimes|m_{C_{1}}\rangle\otimes|m_{C_{2}}\rangle\otimes|m_{C_{3}}\rangle\\ &&\otimes\left( a_{6}|000\rangle+(-1)^{\langle x_{3}^{-}|m_{C_{3}}\rangle}a_{7}|001\rangle+(-1)^{\langle x_{2}^{-}|m_{C_{2}}\rangle}a_{4}|010\rangle\right. \\ &&-(-1)^{\langle x_{2}^{-}|m_{C_{2}}\rangle}(-1)^{\langle x_{3}^{-}|m_{C_{3}}\rangle}a_{5}|011\rangle-(-1)^{\langle x_{1}^{-}|m_{C_{1}}\rangle}a_{2}|100\rangle \\ &&+(-1)^{\langle x_{1}^{-}|m_{C_{1}}\rangle}(-1)^{\langle x_{3}^{-}|m_{C_{3}}\rangle}a_{3}|101\rangle -(-1)^{\langle x_{1}^{-}|m_{C_{1}}\rangle}(-1)^{\langle x_{2}^{-}|m_{C_{2}}\rangle}a_{0}|110\rangle \\ &&-\left.(-1)^{\langle x_{1}^{-}|m_{C_{1}}\rangle}(-1)^{\langle x_{2}^{-}|m_{C_{2}}\rangle}(-1)^{\langle x_{3}^{-}|m_{C_{3}}\rangle}a_{1}|111\rangle\right)_{B_{1}B_{2}B_{3}} \end{array} $$
$$ \begin{array}{@{}rcl@{}} |\psi_{7}\rangle_{B_{1}C_{1}B_{2}C_{2}B_{3}C_{3}}&=&\langle{\varGamma}_{7}|\psi\rangle_{total} \\ &=&{\sum}_{|m_{C_{i}}\rangle=|x^{\pm}_{i}\rangle_{C_{i}}}\left( \frac{1}{\sqrt{2}}\right)^{3}P_{x_{1}}P_{x_{2}}P_{x_{3}}\otimes|m_{C_{1}}\rangle\otimes|m_{C_{2}}\rangle\otimes|m_{C_{3}}\rangle \\ &&\otimes\left( a_{7}|000\rangle-(-1)^{\langle x_{3}^{-}|m_{C_{3}}\rangle}a_{6}|001\rangle+(-1)^{\langle x_{2}^{-}|m_{C_{2}}\rangle}a_{5}|010\rangle\right. \\ &&+(-1)^{\langle x_{2}^{-}|m_{C_{2}}\rangle}(-1)^{\langle x_{3}^{-}|m_{C_{3}}\rangle}a_{4}|011\rangle-(-1)^{\langle x_{1}^{-}|m_{C_{1}}\rangle}a_{3}|100\rangle \\ &&-(-1)^{\langle x_{1}^{-}|m_{C_{1}}\rangle}(-1)^{\langle x_{3}^{-}|m_{C_{3}}\rangle}a_{2}|101\rangle +(-1)^{\langle x_{1}^{-}|m_{C_{1}}\rangle}(-1)^{\langle x_{2}^{-}|m_{C_{2}}\rangle}a_{1}|110\rangle \\ &&-\left.(-1)^{\langle x_{1}^{-}|m_{C_{1}}\rangle}(-1)^{\langle x_{2}^{-}|m_{C_{2}}\rangle}(-1)^{\langle x_{3}^{-}|m_{C_{3}}\rangle}a_{0}|111\rangle\right)_{B_{1}B_{2}B_{3}} \end{array} $$

Appendix: B

When the measurement result of particles \((A_{1},A_{2},A_{3})\) is \(|{\varGamma }_{1}\rangle \) in Step 3 of Section 3, we have presented the unitary transformation \(U_{{\varGamma }_{1}}\) that Bob needs to perform. For the other measurement results \(|{\varGamma }_{k}\rangle ~(k=0,2,3,\cdots ,7)\), the unitary transformations \(U_{{\varGamma }_{k}}\) on particles \((B_{1},B_{2},B_{3})\) are expressed as follows

$$ \begin{array}{@{}rcl@{}} U_{{\varGamma}_{0}}&=&|001\rangle\langle000|+(-1)^{\langle x_{3}^{-}|m_{C_{3}}\rangle}|001\rangle\langle001|+(-1)^{\langle x_{2}^{-}|m_{C_{2}}\rangle}|010\rangle\langle010| \\ &&+(-1)^{\langle x_{2}^{-}|m_{C_{2}}\rangle}(-1)^{\langle x_{3}^{-}|m_{C_{3}}\rangle}|011\rangle\langle011|+(-1)^{\langle x_{1}^{-}|m_{C_{1}}\rangle}|100\rangle\langle100| \\ &&+(-1)^{\langle x_{1}^{-}|m_{C_{1}}\rangle}(-1)^{\langle x_{3}^{-}|m_{C_{3}}\rangle}|101\rangle\langle101| +(-1)^{\langle x_{1}^{-}|m_{C_{1}}\rangle}(-1)^{\langle x_{2}^{-}|m_{C_{2}}\rangle}|110\rangle\langle110| \\ &&+(-1)^{\langle x_{1}^{-}|m_{C_{1}}\rangle}(-1)^{\langle x_{2}^{-}|m_{C_{2}}\rangle}(-1)^{\langle x_{3}^{-}|m_{C_{3}}\rangle}|111\rangle\langle111| \end{array} $$
$$ \begin{array}{@{}rcl@{}} U_{{\varGamma}_{2}}&=&|010\rangle\langle000|-(-1)^{\langle x_{3}^{-}|m_{C_{3}}\rangle}|011\rangle\langle001|-(-1)^{\langle x_{2}^{-}|m_{C_{2}}\rangle}|000\rangle\langle010| \\ &&+(-1)^{\langle x_{2}^{-}|m_{C_{2}}\rangle}(-1)^{\langle x_{3}^{-}|m_{C_{3}}\rangle}|001\rangle\langle011|+(-1)^{\langle x_{1}^{-}|m_{C_{1}}\rangle}|110\rangle\langle100| \\ &&+(-1)^{\langle x_{1}^{-}|m_{C_{1}}\rangle}(-1)^{\langle x_{3}^{-}|m_{C_{3}}\rangle}|111\rangle\langle101| -(-1)^{\langle x_{1}^{-}|m_{C_{1}}\rangle}(-1)^{\langle x_{2}^{-}|m_{C_{2}}\rangle}|100\rangle\langle110| \\ &&-(-1)^{\langle x_{1}^{-}|m_{C_{1}}\rangle}(-1)^{\langle x_{2}^{-}|m_{C_{2}}\rangle}(-1)^{\langle x_{3}^{-}|m_{C_{3}}\rangle}|101\rangle\langle111| \end{array} $$
$$ \begin{array}{@{}rcl@{}} U_{{\varGamma}_{3}}&=&|011\rangle\langle000|+(-1)^{\langle x_{3}^{-}|m_{C_{3}}\rangle}|010\rangle\langle001|-(-1)^{\langle x_{2}^{-}|m_{C_{2}}\rangle}|001\rangle\langle010| \\ &&-(-1)^{\langle x_{2}^{-}|m_{C_{2}}\rangle}(-1)^{\langle x_{3}^{-}|m_{C_{3}}\rangle}|000\rangle\langle011|+(-1)^{\langle x_{1}^{-}|m_{C_{1}}\rangle}|111\rangle\langle100| \\ &&-(-1)^{\langle x_{1}^{-}|m_{C_{1}}\rangle}(-1)^{\langle x_{3}^{-}|m_{C_{3}}\rangle}|110\rangle\langle101| +(-1)^{\langle x_{1}^{-}|m_{C_{1}}\rangle}(-1)^{\langle x_{2}^{-}|m_{C_{2}}\rangle}|101\rangle\langle110| \\ &&-(-1)^{\langle x_{1}^{-}|m_{C_{1}}\rangle}(-1)^{\langle x_{2}^{-}|m_{C_{2}}\rangle}(-1)^{\langle x_{3}^{-}|m_{C_{3}}\rangle}|100\rangle\langle111| \end{array} $$
$$ \begin{array}{@{}rcl@{}} U_{{\varGamma}_{4}}&=&|100\rangle\langle000|-(-1)^{\langle x_{3}^{-}|m_{C_{3}}\rangle}|101\rangle\langle001|-(-1)^{\langle x_{2}^{-}|m_{C_{2}}\rangle}|110\rangle\langle010| \\ &&-(-1)^{\langle x_{2}^{-}|m_{C_{2}}\rangle}(-1)^{\langle x_{3}^{-}|m_{C_{3}}\rangle}|111\rangle\langle011|-(-1)^{\langle x_{1}^{-}|m_{C_{1}}\rangle}|000\rangle\langle100| \\ &&+(-1)^{\langle x_{1}^{-}|m_{C_{1}}\rangle}(-1)^{\langle x_{3}^{-}|m_{C_{3}}\rangle}|001\rangle\langle101| +(-1)^{\langle x_{1}^{-}|m_{C_{1}}\rangle}(-1)^{\langle x_{2}^{-}|m_{C_{2}}\rangle}|010\rangle\langle110| \\ &&+(-1)^{\langle x_{1}^{-}|m_{C_{1}}\rangle}(-1)^{\langle x_{2}^{-}|m_{C_{2}}\rangle}(-1)^{\langle x_{3}^{-}|m_{C_{3}}\rangle}|011\rangle\langle111| \end{array} $$
$$ \begin{array}{@{}rcl@{}} U_{{\varGamma}_{5}}&=&|101\rangle\langle000|+(-1)^{\langle x_{3}^{-}|m_{C_{3}}\rangle}|100\rangle\langle001|-(-1)^{\langle x_{2}^{-}|m_{C_{2}}\rangle}|111\rangle\langle010| \\ &&+(-1)^{\langle x_{2}^{-}|m_{C_{2}}\rangle}(-1)^{\langle x_{3}^{-}|m_{C_{3}}\rangle}|110\rangle\langle011|-(-1)^{\langle x_{1}^{-}|m_{C_{1}}\rangle}|001\rangle\langle100| \\ &&-(-1)^{\langle x_{1}^{-}|m_{C_{1}}\rangle}(-1)^{\langle x_{3}^{-}|m_{C_{3}}\rangle}|000\rangle\langle101| -(-1)^{\langle x_{1}^{-}|m_{C_{1}}\rangle}(-1)^{\langle x_{2}^{-}|m_{C_{2}}\rangle}|011\rangle\langle110| \\ &&+(-1)^{\langle x_{1}^{-}|m_{C_{1}}\rangle}(-1)^{\langle x_{2}^{-}|m_{C_{2}}\rangle}(-1)^{\langle x_{3}^{-}|m_{C_{3}}\rangle}|010\rangle\langle111| \end{array} $$
$$ \begin{array}{@{}rcl@{}} U_{{\varGamma}_{6}}&=&|110\rangle\langle000|+(-1)^{\langle x_{3}^{-}|m_{C_{3}}\rangle}|111\rangle\langle001|+(-1)^{\langle x_{2}^{-}|m_{C_{2}}\rangle}|100\rangle\langle010| \\ &&-(-1)^{\langle x_{2}^{-}|m_{C_{2}}\rangle}(-1)^{\langle x_{3}^{-}|m_{C_{3}}\rangle}|101\rangle\langle011|-(-1)^{\langle x_{1}^{-}|m_{C_{1}}\rangle}|010\rangle\langle100| \\ &&+(-1)^{\langle x_{1}^{-}|m_{C_{1}}\rangle}(-1)^{\langle x_{3}^{-}|m_{C_{3}}\rangle}|011\rangle\langle101| -(-1)^{\langle x_{1}^{-}|m_{C_{1}}\rangle}(-1)^{\langle x_{2}^{-}|m_{C_{2}}\rangle}|000\rangle\langle110| \\ &&-(-1)^{\langle x_{1}^{-}|m_{C_{1}}\rangle}(-1)^{\langle x_{2}^{-}|m_{C_{2}}\rangle}(-1)^{\langle x_{3}^{-}|m_{C_{3}}\rangle}|001\rangle\langle111| \end{array} $$
$$ \begin{array}{@{}rcl@{}} U_{{\varGamma}_{7}}&=&|111\rangle\langle000|-(-1)^{\langle x_{3}^{-}|m_{C_{3}}\rangle}|110\rangle\langle001|+(-1)^{\langle x_{2}^{-}|m_{C_{2}}\rangle}|101\rangle\langle010| \\ &&+(-1)^{\langle x_{2}^{-}|m_{C_{2}}\rangle}(-1)^{\langle x_{3}^{-}|m_{C_{3}}\rangle}|100\rangle\langle011|-(-1)^{\langle x_{1}^{-}|m_{C_{1}}\rangle}|011\rangle\langle100| \\ &&-(-1)^{\langle x_{1}^{-}|m_{C_{1}}\rangle}(-1)^{\langle x_{3}^{-}|m_{C_{3}}\rangle}|010\rangle\langle101| +(-1)^{\langle x_{1}^{-}|m_{C_{1}}\rangle}(-1)^{\langle x_{2}^{-}|m_{C_{2}}\rangle}|001\rangle\langle110| \\ &&-(-1)^{\langle x_{1}^{-}|m_{C_{1}}\rangle}(-1)^{\langle x_{2}^{-}|m_{C_{2}}\rangle}(-1)^{\langle x_{3}^{-}|m_{C_{3}}\rangle}|000\rangle\langle111| \end{array} $$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, K., Shi, L., Luo, B. et al. Deterministic Controlled Remote State Preparation of Real-Parameter Multi-Qubit States via Maximal Slice States. Int J Theor Phys 58, 4079–4092 (2019). https://doi.org/10.1007/s10773-019-04274-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04274-6

Keywords

Navigation