Skip to main content
Log in

An LSB-Based Quantum Audio Watermarking Using MSB as Arbiter

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

With the extension of digital multimedia into quantum computation and quantum networks, copyright protection of digital multimedia in quantum networks becomes a significant issue. As an important security technology, quantum watermarking is an appropriate solution, which embeds copyright information into the host signal. Up to now, several methods have been proposed for quantum image watermarking, while there are a few achievements in the domain of quantum audio watermarking. This work presents a least significant qubit (LSB) based audio watermarking which employs the most significant qubit to determine the qubit position for embedding. In the proposed scheme, the watermark image is first scrambled using a new scrambling method presented in this paper. The scrambled image is then converted into a qubit sequence, and the qubits are embedded into host quantum audio signal using an embedding key. For every procedure of the proposed scheme, the quantum circuit and complexity analysis is presented. Experimental results prove that the proposed scheme is good in terms of robustness, capacity and security.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  1. Benioff, P.: The computer as a physical system: a microscopic quantum mechanical Hamiltonian model of computers as represented by Turing machines. J. Stat. Phys. 22, 563–591 (1980)

    Article  ADS  MathSciNet  Google Scholar 

  2. Vedral, V., Barenco, A., Ekert, A.: Quantum networks for elementary arithmetic operations. Phys. Rev. A. 54, 147–153 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  3. S. E. Venegas-Andraca and S. Bose, Storing, processing, and retrieving an image using quantum mechanics. In Quantum Information and Computation, 2003, pp. 137–148

  4. J. I. Latorre, "Image compression and entanglement," arXiv preprint quant-ph/0510031, 2005

  5. Le, P.Q., Dong, F., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression, and processing operations. Quantum Inf. Process. 10, 63–84 (2011)

    Article  MathSciNet  Google Scholar 

  6. B. Sun, P. Q. Le, A. M. Iliyasu, F. Yan, J. A. Garcia, F. Dong, et al., A multi-channel representation for images on quantum computers using the RGBα color space. In Intelligent Signal Processing (WISP), 2011 IEEE 7th International Symposium on, 2011, pp. 1–6

  7. Zhang, Y., Lu, K., Gao, Y., Wang, M.: NEQR: a novel enhanced quantum representation of digital images. Quantum Inf. Process. 12, 2833–2860 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  8. Sang, J., Wang, S., Li, Q.: A novel quantum representation of color digital images. Quantum Inf. Process. 16, 42 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  9. Zhang, Y., Lu, K., Gao, Y., Xu, K.: A novel quantum representation for log-polar images. Quantum Inf. Process. 12, 3103–3126 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  10. Yuan, S., Mao, X., Xue, Y., Chen, L., Xiong, Q., Compare, A.: SQR: a simple quantum representation of infrared images. Quantum Inf. Process. 13, 1353–1379 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  11. Li, H.-S., Zhu, Q., Zhou, R.-G., Song, L., Yang, X.-J.: Multi-dimensional color image storage and retrieval for a normal arbitrary quantum superposition state. Quantum Inf. Process. 13, 991–1011 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  12. Wang, J.: QRDA: quantum representation of digital audio. Int. J. Theor. Phys. 55, 1622–1641 (2015)

    Article  Google Scholar 

  13. Yan, F., Iliyasu, A.M., Guo, Y., Yang, H.: Flexible representation and manipulation of audio signals on quantum computers. Theor. Comput. Sci. 2017,

  14. Qu, Z.-G., He, H.-X., Li, T.: Novel quantum watermarking algorithm based on improved least significant qubit modification for quantum audio. Chin. Phys. B. 27, 010306 (2018)

    Article  ADS  Google Scholar 

  15. Zhang, W.-W., Gao, F., Liu, B., Jia, H.-Y., Wen, Q.-Y., Chen, H.: A quantum watermark protocol. Int. J. Theor. Phys. 52, 504–513 (2013)

    Article  MathSciNet  Google Scholar 

  16. Song, X.-H., Wang, S., Liu, S., El-Latif, A.A.A., Niu, X.-M.: A dynamic watermarking scheme for quantum images using quantum wavelet transform. Quantum Inf. Process. 12, 3689–3706 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  17. Song, X., Wang, S., El-Latif, A.A.A., Niu, X.: Dynamic watermarking scheme for quantum images based on Hadamard transform. Multimedia Systems. 20, 379–388 (2014)

    Article  Google Scholar 

  18. Wang, S., Song, X., Niu, X.: Quantum cosine transform based watermarking scheme for quantum images. Chin. J. Electron. 24, 321–325 (2015)

    Article  Google Scholar 

  19. Wang, N., Lin, S.: A watermarking strategy for quantum image based on least significant bit. Chin. J. Quantum Electron. 32, 263–269 (2015)

    Google Scholar 

  20. Heidari, S., Naseri, M.: A novel LSB based quantum watermarking. Int. J. Theor. Phys. 55, 4205–4218 (2016)

    Article  Google Scholar 

  21. Jiang, N., Zhao, N., Wang, L.: LSB based quantum image steganography algorithm. Int. J. Theor. Phys. 55, 107–123 (2016)

    Article  Google Scholar 

  22. Wei, Z.-H., Chen, X.-B., Xu, S.-J., Niu, X.-X., Yang, Y.-X.: A spatial domain quantum watermarking scheme. Commun. Theor. Phys. 66, 66–76 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  23. Heidari, S., Naseri, M., Gheibi, R., Baghfalaki, M., Pourarian, M.R., Farouk, A.: A new quantum watermarking based on quantum wavelet transforms. Commun. Theor. Phys. 67, 732 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  24. Chen, K., Yan, F., Iliyasu, A.M., Zhao, J.: Exploring the implementation of steganography protocols on quantum audio signals. Int. J. Theor. Phys. 57, 476–494 (2017)

    Article  MathSciNet  Google Scholar 

  25. Zhang, L., Tian, X., Xia, S.: A scrambling algorithm of image encryption based on Rubik's cube rotation and logistic sequence. In: Multimedia and Signal Processing (CMSP), 2011 International Conference on, pp. 312–315 (2011)

    Chapter  Google Scholar 

  26. M. Li, T. Liang, and Y.-j. He, Arnold Transform Based Image Scrambling Method. In 3rd International Conference on Multimedia Technology, 2013

  27. J. Zou, R. K. Ward, and D. Qi, A new digital image scrambling method based on Fibonacci numbers. In Circuits and Systems, 2004. ISCAS'04. Proceedings of the 2004 International Symposium on, 2004, pp. III-965

  28. Lin, X.-H., Cai, L.-D.: Scrambling research of digital image based on Hilbert curve [J]. Chinese Journal of Stereology and Image Analysis. 9, 224–227 (2004)

    Google Scholar 

  29. Y. Zou, X. Tian, S. Xia, and Y. Song, A novel image scrambling algorithm based on Sudoku puzzle. In Image and Signal Processing (CISP), 2011 4th International Congress on, 2011, pp. 737–740

  30. Jiang, N., Wu, W.-Y., Wang, L.: The quantum realization of Arnold and Fibonacci image scrambling. Quantum Inf. Process. 13, 1223–1236 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  31. Jiang, N., Wang, L., Wu, W.-Y.: Quantum Hilbert image scrambling. Int. J. Theor. Phys. 53, 2463–2484 (2014)

    Article  Google Scholar 

  32. M. A. Nielsen and I. Chuang, Quantum Computation and Quantum Information. ed: AAPT, 2002

  33. www.MusicRadar.com. (2015, 01/08/2018). SampleRadar: 235 free '80s heat samples. Available: https://www.musicradar.com/news/tech/sampleradar-235-free-80s-heat-samples-628852. Accessed 18 Jan 2018

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Mosleh.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nejad, M.Y., Mosleh, M. & Heikalabad, S.R. An LSB-Based Quantum Audio Watermarking Using MSB as Arbiter. Int J Theor Phys 58, 3828–3851 (2019). https://doi.org/10.1007/s10773-019-04251-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04251-z

Keywords

Navigation