Skip to main content
Log in

Geometric Phases in Majorana Zero-Energy State

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The usual Berry phase for a Majorana zero-energy state is zero. In this manuscript, we propose a generalized geometric phase for Majorana zero-energy state, which is non-zero for the electron or hole, respectively. We calculate these non-zero geometric phases in a Ferromagnet (FI)/Topological Insulator (TI)/Superconductor (SC) hybrid system, whose magnetization can be manipulated by changing adiabatically the spin degree of freedom. The non-zero geometric phases have potential application on the topological quantum computation treatment of Majorana zero-energy modes. We also discuss the non-adiabatic geometric phase associated with Majorana zero-energy state by the path integral method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Majorana II, E.: Teoria simmetrica dell’elettrone e del positrone. Nuovo Cimento. 14, 171–184 (1937)

    Article  MATH  Google Scholar 

  2. Nayak, C., Simon, S.H., Stern, A., Freedman, M., Sankar, D.S.: Non-Abelian anyons and topological quantum computation. Rev. Mod. Phys. 80, 1083–1159 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Wilczek, F.: Majorana returns. Nat. Phys. 5, 614–618 (2009)

    Article  Google Scholar 

  4. Fu, L., Kane, C.L.: Phys. Rev. Lett. 10, 096407 (2008)

    Article  ADS  Google Scholar 

  5. Sau, J.D., Lutchyn, R.M., Tewari, S., Das Sarma, S.: Generic New Platform for Topological Quantum Computation Using Semiconductor Heterostructures. Phys. Rev. Lett. 104, 040502 (2010)

    Article  ADS  Google Scholar 

  6. Mourik, V., Zuo, K., Frolov, S.M., Plissard, S.R., Bakkers, E.P.A.M., Kouwenhoven, L.P.: Signatures of Majorana Fermions in Hybrid Superconductor-Semiconductor Nanowire Devices. Science. 336, 1003–1007 (2012)

    Article  ADS  Google Scholar 

  7. Rokhinson, L.P., Liu, X., Furdyna, J.K.: The fractional a.c. Josephson effect in a semiconductor–superconductor nanowire as a signature of Majorana particles. Nat. Phys. 8, 795–799 (2012)

    Article  Google Scholar 

  8. Deng, M.T., Yu, C.L., Huang, G.Y., Larsson, M., Caroff, P., Xu, H.Q.: Anomalous Zero-Bias Conductance Peak in a Nb–InSb Nanowire–Nb Hybrid Device. Nano Lett. 12, 6414–6419 (2012)

    Article  ADS  Google Scholar 

  9. Das, A., Ronen, Y., Most, Y., Oreg, Y., Heiblum, M., Shtrikman, H.: Zero-bias peaks and splitting in an Al–InAs nanowire topological superconductor as a signature of Majorana fermions. Nat. Phys. 8, 887–895 (2012)

    Article  Google Scholar 

  10. He, Q.L., Pan, L., Stern, A.L., Burks, E.C., Che, X., Yin, G., Wang, J., Lian, B., Zhou, Q., Choi, E.S., Murata, K., Kou, X., Chen, Z., Nie, T., Shao, Q., Fan, Y., Zhang, S.C., Liu, K., Xia, J., Wang, K.L.: Chiral Majorana fermion modes in a quantum anomalous Hall insulator–superconductor structure. Science. 357, 294–299 (2017)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Zanardi, P., Rasetti, M.: Holonomic quantum computation. Phys. Lett. A. 264, 94–99 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  12. Pachos, J., Zanardi, P., Rasetti, M.: Phys. Rev. A. 61, 010305(R) (2000)

    Article  ADS  MathSciNet  Google Scholar 

  13. Jones, J.A., Vedral, V., Ekert, A., Castagnoli, G.: Geometric quantum computation using nuclear magnetic resonance. Nature. 403, 869–871 (2000)

    Article  ADS  Google Scholar 

  14. Falci, G., Fazio, R., Palma, G.M., Siewert, J., Vedral, V.: Detection of geometric phases in superconducting nanocircuits. Nature. 407, 355–358 (2000)

    Article  ADS  Google Scholar 

  15. Duan, L.M., Cirac, J.I., Zoller, P.: Science. 29, 1695 (2001)

    Article  ADS  Google Scholar 

  16. Solinas, P., Zanardi, P., Zangghi, N., Rossi, F.: Holonomic quantum gates: A semiconductor-based implementation. Phys. Rev. A. 67, 062315 (2003)

    Article  ADS  Google Scholar 

  17. Wang, X.B., Keiji, M.: Phys. Rev. Lett. 87, 097901 (2001)

    Article  ADS  Google Scholar 

  18. Zhu, S.L., Wang, Z.D.: Implementation of Universal Quantum Gates Based on Nonadiabatic Geometric Phases. Phys. Rev. Lett. 89, 097902 (2002)

    Article  ADS  Google Scholar 

  19. Li, X.Q., Cen, X., Huang, G.X., Ma, L., Yan, Y.J.: Nonadiabatic geometric quantum computation with trapped ions. Phys. Rev. A. 66, 042320 (2002)

    Article  ADS  Google Scholar 

  20. Halperin, B.J., Oreg, Y., Stern, A., Refael, G., Alicea, J., von Oppen, F.: Adiabatic manipulations of Majorana fermions in a three-dimensional network of quantum wires. Phys. Rev. B85. 85, 144501 (2012)

    Article  Google Scholar 

  21. X. J. Luo, Y. P. He, T. F. J. Poon, X. Liu and X. J. Liu, arXiv/cond-mat/1803.02173 (2018)

  22. Wang, Z.C., Li, B.Z.: Phys. Rev. A. 67, 062315 (2003)

    Article  ADS  Google Scholar 

  23. Kuratsuji, H., Iida, S.: Effective Action for Adiabatic Process: Dynamical Meaning of Berry and Simon's Phase. Prog. Theo. Phys. 74, 439–445 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This study is supported by the National Key R&D Program of China (Grant No. 2018FYA0305804), and the Key Research Program of the Chinese Academy of Sciences (Grant No. XDPB08-3).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zheng-Chuan Wang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, ZC. Geometric Phases in Majorana Zero-Energy State. Int J Theor Phys 58, 2703–2710 (2019). https://doi.org/10.1007/s10773-019-04160-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04160-1

Keywords

Navigation