Skip to main content
Log in

The Quantum Dense Coding in a Two Atomic System Under the Non-Markovian Environment

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The quantum dense coding in a two atomic system under the non-Markovian environment is investigated in detail. We mainly concentrate on the effects about the environment parameter Γ(or γ) and the purity r of the initial state on the dense coding capacity χ. It is found that the dense coding capacity χ is initially decreased and gradually trends to be a constant nonzero value with evolution of time for different environment parameter Γ(or γ). This constant value is determined the initial state and independent to the environment. In other word, environment noise only affects the process of quantum dense coding, but not affects the final result of dense coding capacity. The purity r of the initial state has a strong influence on the initial value of the χ. Besides, for one value r, dense coding capacity χ is decreased firstly, and then reaches a stable value for a long time, whatever the values of other parameters are, but when the purity r of the initial state increased, the initial value of dense coding capacity increased.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Hagley, E., Matre, X., Nogues, G., Wunderlich, C., Brune, M., Raimond, J. M., Haroche, S.: Phys. Rev. Lett. 79, 1 (1997)

    Article  ADS  Google Scholar 

  2. Guo, G. C., Zhang, Y. S.: Phys. Rev. A 65, 054302 (2002)

    Article  ADS  Google Scholar 

  3. Deng, Z. J., Feng, M., Gao, K. L.: Phys. Rev. A 73, 014302 (2006)

    Article  ADS  Google Scholar 

  4. Song, K. H.: Acta Phys. Sin. 54, 4730–4735 (2005). (in Chinese)

    Google Scholar 

  5. Wang, J., Yu, L. B., Ye, L.: Chin. Phys. 16, 2211–2214 (2007)

    Article  ADS  Google Scholar 

  6. Bennett, C.H., Wiesner, SJ.: Phys. Rev. Lett. 69, 2881 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  7. Adriano, B., Ekert, A.K.: J. Mod. Optic. 42, 1253–1259 (2007)

    Google Scholar 

  8. Bennett, C.H., Brassard, G., Crépeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  9. Ekert, A.K.: Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  10. Jian, W., Quan, Z., Tang, C. J.: Chin. Phy. Lett. 23, 2360 (2006)

    Article  ADS  Google Scholar 

  11. Ni, Z. X., Liu, Y., He, J.: Chin. Phys. B. 17, 1597–1600 (2008)

    Article  ADS  Google Scholar 

  12. Quek, S., Li, Z., Ye, Y.: Phys. Rev. A 81, 024302 (2010)

    Article  ADS  Google Scholar 

  13. Shadman, Z., Kampermann, H., Macchiavello, C., Bruss, D.: New J. Phys. 12, 073042 (2010)

    Article  ADS  Google Scholar 

  14. Wang, H. S., Chang, P. C.: IEEE T. Veh. Technol. 48, 1739 (1999)

    Article  Google Scholar 

  15. Bellomo, B., Lo Franco, R., Compagno, G.: Phys. Rev. Lett. 99, 160502 (2007)

    Article  ADS  Google Scholar 

  16. Liu, B. H., Hu, X. M., Huang, Y. F., Li, C. F., Guo, G.C.: arXiv. org. 114, 10005 (2016)

    Google Scholar 

  17. Karlsson, A., Lyyra, H., Laine, E. M., Maniscalco, S., Piilo, J.: Phys. Rev. A 93, 032135 (2016)

    Article  ADS  Google Scholar 

  18. Li, X. H., Zhao, B. K., Sheng, Y. B., Deng, F. G., Zhou, H. Y.: Int. J. Quantum Inform. 7, 1479–1489 (2009)

    Article  Google Scholar 

  19. Yang, G. H., Ma, Y. H., Di, M., Zhou, L.: Int. J. theor. Phys. 53, 102 (2014)

    Article  Google Scholar 

  20. Yu, T., Eberly, J. H.: Opt. Commun. 283, 676–680 (2010)

    Article  ADS  Google Scholar 

  21. Holevo, A. S.: Probl. Inform. Transm. 9, 177–183 (1973)

    Google Scholar 

  22. Holevo, A. S.: IEEE Trans. Inf. Theory. 44, 269–273 (1998)

    Article  Google Scholar 

  23. Schumacher, B., Westmoreland, M. D.: Phys. Rev. A 56, 131 (1997)

    Article  ADS  Google Scholar 

  24. Hiroshima, T: J. Phys. A: Math. Gen. 34, 6907 (2001)

    Article  ADS  Google Scholar 

  25. Zhang, G. F.: Phys. Scr. 79, 015001 (2009)

    Article  ADS  Google Scholar 

  26. Yang, Q., Yang, M., Li, D. C., Cao, Z. L.: Int. J. Theor. Phys. 51, 2160 (2012)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Liu-Yong Cheng or Guo-Hui Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, X., Li, YQ., Cheng, LY. et al. The Quantum Dense Coding in a Two Atomic System Under the Non-Markovian Environment. Int J Theor Phys 58, 493–501 (2019). https://doi.org/10.1007/s10773-018-3949-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3949-2

Keywords

Navigation