Skip to main content
Log in

Quantum Dense Coding Properties Between Two Spatially Separated Atoms in Free Space

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Quantum dense coding properties between two identical and spatially separated atoms in free space with different initial states is investigated. It shows that dense coding capacity χ experienced a sharp decline firstly and then gradually increased to be one steady value 1 with increasing Γt. The realization of dense coding capacity χ is found to be strongly dependent on the initial states. It is worth noting that the initial pure state |ee〉 is not useful for dense coding in this system, due to the dense coding capacity χ is always less than 1(a valid dense coding capacity satisfies χ > 1). Otherwise, for the initial entangled state and mixed state, one can obtain the valid dense coding capacity, the results show that one threshold value of tc is exists, and when t < tc the dense coding capacity is valid. Tuning the atomic distance between the two atoms slightly broaden the valid dense coding region and improve the value of tc. Decreasing the purity a of initial states not only broaden the region but also prolong the effective time where one can carry out the valid dense coding successfully.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Belavkin, V., Hirota, O., Hudson, R.: Quantum Communications and Measurement (2009)

  2. Hirota, O., Holevo, A.S., Caves, C.M.: Quantum Communication, Computing, and Measurement. Kluwer Academic Publishers, Dordrecht (1997)

  3. Kumar, P., D’ariano, G.M., Hirota, O.: Quantum Communication, Computing, and Measurement 2. Kluwer Academic Publishers, Dordrecht (2001)

  4. Bouwmeester, D., Ekert, A.k., Zeilinger, A.: The Physics of Quantum Information: Quantum Cryptography, Quantum Teleportation, Quantum Computation. Springer, Berlin (2000)

  5. Alber, G., Beth, T., Horodecki, P., Horodecki, R., Horodecki, M., Weinfurther, H., Werner, R., Zeilinger, A.: Quantum Information. Springer, Berlin (2002)

    MATH  Google Scholar 

  6. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  7. Bennett, C.H., Wiesner, S.J.: . Phys. Rev. Lett. 69, 2881 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  8. Mattle, K., Weinfurter, H., Kwiat, P.G., Zeilinger, A.: . Phys. Rev. Lett. 76, 4656 (1996)

    Article  ADS  Google Scholar 

  9. Xu, H.Y., Yang, G.H.: . Int. J. Theor. Phys. 56, 2803 (2017)

    Article  Google Scholar 

  10. Bareno, A., Ekert, A.: . J. Mod. Opt. 42, 1253 (1995)

    Article  ADS  Google Scholar 

  11. Zhao, X., Li, Y.Q., Cheng, L.Y., Yang, G.H.: . Int. J. Theor. Phys. 58, 493 (2019)

    Article  Google Scholar 

  12. Braunstein, S.L., Kimble, H.J.: . Phys. Rev. A 61, 042302 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  13. Bose, S., Plenio, M.B., Vedral, V.: J. Mod. Opt. 47, 291 (2000)

    Article  ADS  Google Scholar 

  14. Holevo, A.S.: . Probl. Inf. Transm. 9(3), 177–183 (1973)

    Google Scholar 

  15. Holevo, A.S.: . Probl. Inf. Transm. 15(4), 247–253 (1979)

    Google Scholar 

  16. Holevo, A.S.: . IEEE Trans. Inf. Theory 44, 269 (1998)

    Article  Google Scholar 

  17. Schumacher, B., Westmoreland, M.D.: . Phys. Rev. A 56, 131 (1997)

    Article  ADS  Google Scholar 

  18. Plenio, M.B., et al.: . Phys. Rev. A 59, 2468 (1999)

    Article  ADS  Google Scholar 

  19. Ficek, Z., Tanas, R.: . Phys. Rep. 372, 369 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  20. Benatti, F., et al.: . Phys. Rev. Lett. 91, 070402 (2003)

    Article  ADS  Google Scholar 

  21. Kiffner, M., Evers, J., Keitel, C.H.: . Phys. Rev. A 75, 032313 (2007)

    Article  ADS  Google Scholar 

  22. Agarwal, G.S., Patnaik, A.K.: . Phys. Rev. A 63, 043805 (2001)

    Article  ADS  Google Scholar 

  23. Evers, J., Kiffner, M., Macovei, M., Keitel, C.H.: . Phys. Rev. A 73, 023804 (2006)

    Article  ADS  Google Scholar 

  24. Macovei, M., Ficek, Z., Keitel, C.H.: . Phys. Rev. A 73, 063821 (2006)

    Article  ADS  Google Scholar 

  25. Mandel, L., Wolf, E.: Optical Coherence and Quantum Optics. Cambridge University Press , Cambridge (1995)

    Book  Google Scholar 

  26. Ficek, Z., Swain, S.: Quantum Interference and Coherence. Springer, New York (2005)

    MATH  Google Scholar 

  27. Agarwal, G.S.: Quantum statistical theories of spontaneous emission and their relation to other approaches. In: Spring Tracts in Modern Physics: Quantum Optics. Springer-Verlag, Berlin (1974)

  28. Yu, T., Eberly, J.H.: . Quantum Inf. Comput. 7, 459 (2007)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiang-Fu Jia or Guo-Hui Yang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, YQ., Li, X., Jia, XF. et al. Quantum Dense Coding Properties Between Two Spatially Separated Atoms in Free Space. Int J Theor Phys 59, 3378–3386 (2020). https://doi.org/10.1007/s10773-020-04594-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-020-04594-y

Keywords

Navigation