Skip to main content
Log in

Remote Preparation of Some Three Particle Entangled States Under Divided Information

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper we design a protocol for the preparation of a class of three particle entangled states at a distant location in the situation where the information of the state is divided. This situation of shared information is important for security reason since entanglement is considered as a precious quantum resource. We use an eight particle entangled state in our protocol as the quantum resource. The scheme is supervised by a controller.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. Phys. Rev. Lett. 70, 1895–1899 (1993)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Bouwmeester, D., Pan, J.W., Mattle, K., Eibl, M., Weinfurter, H., Zeilinger, A.: Experimental quantum teleportation. Nature 390(6660), 575–579 (1997)

    Article  ADS  MATH  Google Scholar 

  3. Kim, Y.H., Kulik, S.P., Shis, Y.: Quantum teleportation of a polarization state with a complete Bell-state measurement. Phys. Rev. Lett. 86, 1370 (2001)

    Article  ADS  Google Scholar 

  4. Bao, S.S., Tomita, A.: Teleportation of an unknown state by W-state. Phys. Lett. A 296, 161–164 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  5. Zhang, Z.J., Man, Z.X.: Many-agent controlled teleportation of multi-qubit quantum information. Phys. Lett. A 341(1), 55–59 (2005)

    Article  ADS  MATH  Google Scholar 

  6. Li, D., Cao, Z.: Teleportation of two-particle entangled state via cluster state. Commun. Theor. Phys. 47, 464–466 (2007)

    Article  ADS  Google Scholar 

  7. Yang, K., Huang, L., Yang, L.W.: Quantum teleportation via GHZ-like state. Int. J. Theor. Phys. 48, 516–521 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  8. Yu, L.Z., Wu, T.: Probabilistic teleportation of three-qubit entangled state via five-qubit cluster state. Int. J. Theor. Phys. 52(5), 1461–1465 (2013)

    Article  MathSciNet  Google Scholar 

  9. Yan, A.: Bidirectional controlled teleportation via six-qubit cluster state. Int. J. Theor. Phys. 52, 3870–3873 (2013). https://doi.org/10.1007/s10773-013-1694-0

    Article  MathSciNet  MATH  Google Scholar 

  10. Nandi, K., Mazumdar, C.: Quantum teleportation of a two qubit state using GHZ-like state. Int. J. Theor. Phys. 53, 1322–1324 (2014)

    Article  MATH  Google Scholar 

  11. Yang, Y-Q., Zha, X.W., Yu, Y.: Asymmetric bidirectional controlled teleportation via seven-qubit cluster state. Int. J. Theor. Phys. 55, 4197–4204 (2016). https://doi.org/10.1007/s10773-016-3044-5

    Article  MATH  Google Scholar 

  12. Li, W., Zha, X.W., Qi, J-X.: Tripartite quantum controlled teleportation via seven-qubit cluster state. Int. J. Theor. Phys. 55, 3927–3933 (2016). https://doi.org/10.1007/s10773-016-3022-y

    Article  MathSciNet  MATH  Google Scholar 

  13. Choudhury, B.S., Samanta, S: Asymmetric bidirectional 3 and 2 qubit teleportation protocol between Alice and Bob via 9-qubit cluster state. Int. J. Theor. Phys. 56, 3285–3296 (2017). https://doi.org/10.1007/s10773-017-3495-3

    Article  MathSciNet  MATH  Google Scholar 

  14. Choudhury, B.S., Samanta, S: Simultaneous perfect teleportation of three 2-qubit states. Quantum Inf. Process. 16, 230 (2017). https://doi.org/10.1007/s11128-017-1680-1

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Tan, X., Yang, P., Song, T.: Teleportation of three-particle W state. Int. J. Theor. Phys. 57, 329–338 (2018). https://doi.org/10.1007/s10773-017-3565-6

    Article  MATH  Google Scholar 

  16. Lo, H.K.: Classical-communication cost in distributed quantum-information processing. A generalization of quantum-communication complexity. Phys. Rev. A 62, 012313 (2000)

    Article  ADS  Google Scholar 

  17. Pati, A.K.: Minimum classical bit for remote preparation and measurement of a qubit. Phys. Rev. A 63, 014302 (2001)

    Article  ADS  Google Scholar 

  18. Bennett, C.H., Divincenzo, D.P., Shor, P.W., Smolin, J.A., Terhal, B.M., Wootters, W.K.: Remote state preparation. Phys. Rev. Lett. 87, 077902 (2001)

    Article  ADS  Google Scholar 

  19. Berry, D.W., Sanders, B.C.: Optimal remote state preparation. Phys. Rev. Lett. 90, 057901 (2003)

    Article  ADS  Google Scholar 

  20. Ye, M.Y., Zhang, Y.S., Guo, G.C.: Faithful remote state preparation using finite classical bits and a nonmaximally entangled state. Phys. Rev. A 69, 022310 (2004)

    Article  ADS  Google Scholar 

  21. Wang, D., Liu, Y-M, Zhang, Z-J: Remote preparation of a class of three-qubit states. Opt. Commun. 281, 871–875 (2008)

    Article  ADS  Google Scholar 

  22. Wang, D.: Remote preparation of an arbitrary two-particle pure state via nonmaximally entangled states and positive operator-valued measurement. Int. J. Quantum Inf. 8(8), 1265–1275 (2010)

    Article  MATH  Google Scholar 

  23. Wang, D., Ye, L.: Optimizing scheme for remote preparation of four-particle cluster-like entangled states. Int. J. Theor. Phys. 50, 2748–2757 (2011). https://doi.org/10.1007/s10773-011-0774-2

    Article  MATH  Google Scholar 

  24. Wang, D., Hoehn, R.D., Ye, L., Kais, S.: Generalized remote preparation of arbitrary m-qubit entangled states via genuine entanglements. Entropy 17, 1755–1774 (2015). https://doi.org/10.3390/e17041755

    Article  ADS  Google Scholar 

  25. Wang, D., Hu, Y-D., Wang, Z-Q., Ye, L.: Efficient and faithful remote preparation of arbitrary three- and four-particle W-class entangled states. Quantum Inf. Process. 14(6), 2135–2151 (2015)

    Article  ADS  MATH  Google Scholar 

  26. Wang, D., Hoehn, R.D., Ye, L., Kais, S.: Efficient remote preparation of four-qubit cluster-type entangled states with multi-party over partially entangled channels. Int. J. Theor. Phys. 55(7), 3454–3466 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  27. Wang, D., Huang, A-J., Sun, W-Y., Shi, J-D., Ye, L.: Practical single-photon-assisted remote state preparation with non-maximally entanglement. Quantum Inf. Process. 15(8), 3367–3381 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  28. Zhang, D., Zha, X.W., Duan, Y-J., Yang, Y-Q.: Deterministic controlled bidirectional remote state preparation via a six-qubit entangled state. Quantum Inf. Process. 15, 2169–2179 (2016). https://doi.org/10.1007/s11128-016-1265-4

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Sang, M-h., Nie, L.-P.: Controlled remote state preparation of an arbitrary two-qubit state via a six-qubit cluster state. Int. J. Theor. Phys. 56, 2345–2349 (2017). https://doi.org/10.1007/s10773-017-3388-5

    Article  MATH  Google Scholar 

  30. Xia, Y., Song, J., Song, H.S.: Multiparty remote state preparation. J. Phys. B-At. Mol. Opt. 40(18), 3719–3724 (2007)

    Article  ADS  Google Scholar 

  31. An, N.B.: Joint remote preparation of a general two-qubit state. J. Phys. B-At. Mol. Opt. 42(12), 125501 (2009)

    Article  ADS  Google Scholar 

  32. Wang, D., Zha, X.W., Lan, Q.: Joint remote state preparation of arbitrary two-qubit state with six-qubit state. Opt. Commun. 284(24), 5853–5855 (2011)

    Article  ADS  Google Scholar 

  33. Yang, K-Y., Xia, Y.: Joint remote preparation of a general three-qubit state via non-maximally GHZ states. Int. J. Theor. Phys. 51, 1647–1654 (2012). https://doi.org/10.1007/s10773-011-1041-2

    Article  MATH  Google Scholar 

  34. Wang, D., Ye, L.: Probabilistic joint remote preparation of four-cubit cluster-type states with quaternate partially entangled channels. Int. J. Theor. Phys. 51(11), 3376–3386 (2012)

    Article  ADS  MATH  Google Scholar 

  35. Guan, X-W., Chen, X-B., Yang, Y-X.: Controlled-joint remote preparation of an arbitrary two-qubit state via non-maximally entangled channel. Int. J. Theor. Phys. 51, 3575–3586 (2012). https://doi.org/10.1007/s10773-012-1244-1

    Article  MathSciNet  MATH  Google Scholar 

  36. Wang, D., Ye, L.: Joint remote preparation of a class of four-qubit cluster-like states with tripartite entanglements and positive operator-valued measurements. Int. J. Theor. Phys. 52(9), 3075–3085 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  37. Zhan, Y-B., Ma, P.C.: Deterministic joint remote preparation of arbitrary two- and three-qubit entangled states. Quantum Inf. Process. 12, 997–1009 (2013). https://doi.org/10.1007/s11128-012-0441-4

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Wang, D., Ye, L.: Multiparty-controlled joint remote state preparation. Quantum Inf. Process. 12(10), 3223–3237 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  39. Peng, J-Y., Bai, M-Q., Mo, Z-W.: Bidirectional controlled joint remote state preparation. Quantum Inf. Process. 14, 4263–4278 (2015). https://doi.org/10.1007/s11128-015-1122-x

    Article  ADS  MathSciNet  MATH  Google Scholar 

  40. Choudhury, B.S., Dhara, A.: Joint remote state preparation for two-qubit equatorial states. Quantum Inf. Process. 14, 373–379 (2015). https://doi.org/10.1007/s11128-014-0835-6

    Article  ADS  MathSciNet  MATH  Google Scholar 

  41. Liu, W.J., Chen, Z.F., Liu, C., Zheng, Y.: Improved deterministic N-to-one joint remote preparation of an arbitrary qubit via EPR pairs. Int. J. Theor. Phys. 54 (2), 472–483 (2015)

    Article  MATH  Google Scholar 

  42. Ma, P.C., Chen, G-B., Li, X-W., Zhan, Y-B.: Deterministic joint remote preparation of asymmetric five-party three-qubit entangled states. Int. J. Theor. Phys. 56, 1233–1240 (2017). https://doi.org/10.1007/s10773-016-3265-7

    Article  MATH  Google Scholar 

  43. Fu, Y., Yin, H-L., Chen, T-Y., Chen, Z-B.: Long-distance measurement-device-independent multiparty quantum communication. Phys. Rev. Lett. 114(9), 090501 (2015)

    Article  ADS  Google Scholar 

  44. Xu, G., Chen, X-B., Dou, Z., Yang, Y-X., Li, Z.: A novel protocol for multiparty quantum key management. Quantum Inf. Process. 14(8), 2959–2980 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Ul Ain, N.: A novel approach for secure multi-party secret sharing scheme via quantum cryptography. In: Proceedings of 2017 International Conference on Communication, Computing and Digital Systems, C-CODE 7918912, pp. 112–116 (2017). https://doi.org/10.1109/C-CODE.2017.7918912

  46. Wang, S-S., Xu, G-B., Liang, X-Q., Wu, Y-L.: Multiparty quantum key agreement with four-qubit symmetric W state. Int. J. Theor. Phys. https://doi.org/10.1007/s10773-018-3884-2 (2018)

  47. Yuan, H., Liu, Y.M., Zhang, W., Zhang, Z.J.: Optimizing resource consumption, operation complexity and efficiency in quantum-state sharing. J. Phys. B: At. Mol. Opt. Phys. 41, 145506 (2008)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the University Grants Commission of India. The valuable suggestions of the referee are gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soumen Samanta.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Choudhury, B.S., Samanta, S. Remote Preparation of Some Three Particle Entangled States Under Divided Information. Int J Theor Phys 58, 83–91 (2019). https://doi.org/10.1007/s10773-018-3911-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3911-3

Keywords

Navigation