Skip to main content
Log in

Dissipation of Gaussian-Enhenced Chaotic State

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We investigate how an optical Gaussian-enhenced chaotic state (GECS) evolves in an amplitude dissipation channel. We have used the integration within ordered product of operators technique to derive its evolution law and show that the dacay of photon number. Also both the normally ordered and anti-normally ordered of the evolution law are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Srinivasan, S.K.: J. Phys. A Math. Gen. 23, 369 (1998)

    Article  Google Scholar 

  2. Stoler, D.: Phys. Rev. D 1, 3217 (1970)

    Article  ADS  Google Scholar 

  3. Loudon, R., Knight, P.L.J.: Mod. Opt. 34, 709 (1987)

    Article  ADS  Google Scholar 

  4. Wang, T.T., Fan, H.Y.: Opt. Commun. 381, 112 (2016)

    Article  ADS  Google Scholar 

  5. Fan, H.Y.: Phys. Rev. A 41, 1526 (1990)

    Article  ADS  Google Scholar 

  6. Carmichael, H.J.: Statistical Methods in Quantum Optics 1: Master Equations and Fokker–Planck Equations. Springer, Berlin (1999)

    Book  Google Scholar 

  7. Preskill, J.: Lecture notes for physics 229: Quantum information and computation CIT (1998)

  8. Fan, H.Y., Klauder: J. R. Phys. Rev. A 49, 704 (1994)

    ADS  Google Scholar 

  9. Fan, H.Y., Hu, L.Y.: Mod. Phys. Lett. B 22, 2435 (2008)

    Article  ADS  Google Scholar 

  10. Glauber, R.J.: Phys. Rev. 130, 2529 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  11. Fan, H.Y.: Phys. Lett. A 161, 1 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  12. Fan, H.Y.: J. Opt. B: Quantum Semiclass. Opt. 5, 147 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  13. Li, H.M., Yuan, H.C.: Int. J. Theor. Phys. 49, 2121 (2010)

    Article  Google Scholar 

  14. Wang, T.T., Fan, H.Y.: Int. J. Theor. Phys. 52, 2714 (2013)

    Article  Google Scholar 

  15. Fan, H.Y.: J. Phys. A: Math. Gen. 25, 1013 (1992)

    Article  Google Scholar 

  16. Jia, F., Zhang, H.L., Hu, L.Y., Fan, H.Y.: Int. J. Theor. Phys. 54, 1283 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

Work supported by the 2016 Innovative and Strong School Projectis of Guangzhou Maritime University (No. B510304), the Creative team of Hubei Polytechnic University(Project No. 13xtz05) and the Natural Science Foundation of China (Grant Nos. 11404106 and 11775208).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tong-Tong Wang.

Appendix

Appendix

From (20) we can further derive the normally ordered form of ρ(t), using

$$ \int \frac{d^{2}z}{\pi }|z\rangle \langle z|=\int \frac{d^{2}z}{\pi }:\exp \left[ -|z|^{2}+za^{\dag }+z^{\ast }a-a^{\dag }a\right] := 1 $$
(28)

and (22) we see

$$ \rho (t) = \mathfrak{A}^{\prime }\int \frac{d^{2}z}{\pi }:\exp \left[\! e^{2\kappa t}\frac{(f^{2}\!-4|E|^{2}-\!f)|z|^{2} + Ez^{2} + E^{\ast }z^{\ast 2}}{ f^{2} - 4|E|^{2}}-\!|z|^{2} + za^{\dag } + z^{\ast }a - a^{\dag }a\!\right] : $$
(29)

Performing this integration within : : and usin (24), we obtain

$$\begin{array}{@{}rcl@{}} \rho (t) &=&\mathfrak{A}^{\prime }\frac{f^{2}-4|E|^{2}}{e^{2\kappa t}} \\ &&\times \int \frac{d^{2}z}{\pi } :\exp \left[ \left[ \left( f^{2}-4|E|^{2}\right) T-f\right] |z|^{2}\right.\\ &&\left.+Ez^{2}+E^{\ast }z^{\ast 2}+e^{-\kappa t}\sqrt{f^{2}-4|E|^{2}}\left( za^{\dag }+z^{\ast }a\right) -a^{\dag }a\right] : \\ &=&\sqrt{\frac{(f^{2}-4|E|^{2}-f)^{2}-4|E|^{2}}{\left[ \left( f^{2}-4|E|^{2}\right) T-f\right]^{2}-4|E|^{2}}} \\ &&\times :\exp\! \left[ e^{-2\kappa t}\!\left( f^{2}\!-4|E|^{2}\right) \frac{\left[ f - \left( f^{2} - 4|E|^{2}\right) T\right] a^{\dag }a + \left( Ea^{2} + E^{\ast }a^{\dag 2}\right) }{\left[ \left( f^{2}-4|E|^{2}\right) T-f\right]^{2}-4|E|^{2}}-a^{\dag }a\right] : \end{array} $$
(30)

here T = 1 − e− 2κt, this is the normally ordered outstate in the channel. When t = 0, e− 2κt = 1,T = 0, from (24) we see that it reduces to

$$\begin{array}{@{}rcl@{}} \rho (t) &\rightarrow &\sqrt{\frac{(f^{2}-4|E|^{2}-f)^{2}-4|E|^{2}}{ f^{2}-4|E|^{2}}}:\exp \left[ \left( f-1\right) a^{\dag }a+\left( Ea^{2}+E^{\ast }a^{\dag 2}\right) \right] : \\ &=&\sqrt{(f-1)^{2}-4|E|^{2}}\exp (E^{\ast }a^{\dagger 2})\exp (a^{\dagger }a\ln f)\exp (Ea^{2})=\rho_{0}=\rho_{g} \end{array} $$
(31)

which is just the initial state, as expected.

By comparing (30) with (31) we can see clearly the evolution law of the Gaussian-enhenced chaotic state(GECS) in an amplitude damping channel.

1.1 A.1 Discussion

We now discuss the special case when f = 0, and meanwhile we take

$$ E=\frac{\tanh \lambda }{2}=E^{\ast } $$
(32)

in this case the initial state ρg in (8) becomes to

$$ \rho_{g} = \mathfrak{A}\exp (E^{\ast }a^{\dagger 2})\exp (a^{\dagger }a\ln f)\exp (Ea^{2})\!\rightarrow\! \sec h\lambda \exp \left( \frac{\tanh \lambda }{2} a^{\dagger 2}\right)\left\vert 0\right\rangle \left\langle 0\right\vert \exp \left( \frac{\tanh \lambda }{2}a^{2}\right) $$
(33)

which is a pure squeezed vacuum state, and |0〉 〈0| is the vacuum state. Then according to (30) we see that the final state becomes to

$$ \rho (t)|_{f = 0}=\frac{\sec h\lambda }{\sqrt{1-T^{2}\tanh^{2}\lambda }}\exp \left( \frac{\beta }{2}a^{\dag 2}\right) :\exp \left[ \left( \beta T\tanh \lambda -1\right) a^{\dag }a\right] :\exp \left( \frac{\beta }{2} a^{2}\right) $$
(34)

which is a mixed state in a Gaussian enhanced form, here

$$ \beta \equiv \frac{e^{-2\kappa t}\tanh \lambda }{1-T^{2}\tanh^{2}\lambda } $$
(35)

Therefore we conclude that when a pure squeezed vacuum state passing through an amplitude damping channel, it will evolve into a Gaussian enhanced form density operator.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, TT., Fan, HY. Dissipation of Gaussian-Enhenced Chaotic State. Int J Theor Phys 57, 3643–3650 (2018). https://doi.org/10.1007/s10773-018-3877-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3877-1

Keywords

Navigation