Skip to main content
Log in

Amplitude Damping of Hermite-Polynomial-Field Excited Coherent State

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We introduce Hermite-polynomial-field excited coherent state (HPFECS) and then investigate analytically its evolution in an amplitude damping channel. We find that it evolves into a Laguerre-polynomial-weighted-chaotic photon field in this process, which turns out to be a new nonclassical state. The Q-function of this novel state is also given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Alexanian, M.: Nonclassicality criteria: quasi-probability distributions and correlation functions. Phys. Rev. A. 94, 043837 (2016)

    Article  ADS  Google Scholar 

  2. Wang, Z., Yuan, H.C., Fan, H.Y.: Photon-subtracted squeezed coherent state: nonclassicality and decoherence in phase-sensitive reservoirs. J. Opt. Soc. Am. B. 28, 1964–72 (2011)

    Article  ADS  Google Scholar 

  3. Dodonov, V.V., Man’ko, V.I.: Theory of Nonclassical States of Light. Taylor & Francis Inc, New York (2003)

    Google Scholar 

  4. Kim, M., Deoliveira, S., Fa, M., Knight, P.L.: The interaction of displaced number state and squeezed number state fields with 2-Level atoms. J. Mod. Opt. 37, 145–146 (1990)

    Article  ADS  Google Scholar 

  5. Deleglise, S., Dotsenko, I., Sayrin, C., Bernu, J., Brune, M., Raimond, J.-M., Haroche, S.: Reconstruction of non-classical cavity field states with snapshots of their decoherence. Nature 455, 510–514 (2008)

    Article  ADS  Google Scholar 

  6. Sanders, B.C.: Review of entangled coherent states. J. Phys. A: Math. Theor. 45, 244002–1-12 (2012)

    MathSciNet  MATH  Google Scholar 

  7. Bose, S., Jacobs, K., Knight, P.L.: Preparation of nonclassical states in cavities with a moving mirror. Phys. Rev. A 56, 4175 (1997)

    Article  ADS  Google Scholar 

  8. Ashhab, S., Franco, N.: Qubit-oscillator systems in the ultrastrong-coupling regime and their potential for preparing nonclassical states. Phys. Rev. A 81, 042311 (2010)

    Article  ADS  Google Scholar 

  9. Agarwal, G.S., Tara, K.: Nonclassical properties of states generated by the excitations on a coherent state. Phys. Rev. A 43, 492–497 (1991)

    Article  ADS  Google Scholar 

  10. Parigi, V., Zavatta, A., Kim, M.S., Bellini, M.: Probing quantum commutation rules by addition and subtraction of single photons to/from a light field. Science 317, 1890–1893 (2007)

    Article  ADS  Google Scholar 

  11. Ourjoumtsev, A., Dantan, A., Tualle-Brouri, R., Grangier, P.: Increasing entanglement between gaussian states by coherent photon subtraction. Phys. Rev. Lett. 98, 030502 (2007)

    Article  ADS  Google Scholar 

  12. Nha, H., Carmichael, H.J.: Proposed test of quantum nonlocality for continuous variables phys. Rev. Lett. 93, 020–401 (2004)

    Google Scholar 

  13. Fiürasek, J.: Engineering quantum operations on traveling light beams by multiple photon addition and subtraction. Phys. Rev. A 80, 053822 (2009)

    Article  ADS  Google Scholar 

  14. Jia, F., Xu, S., Hu, L.Y., Duan, Z., Huang, J.H.: New approach to generating functions of single- and two-variable even-and odd-Hermite polynomials and applications in quantum optics. Mod. Phys. Lett. B 28(32), 1450249–1-11 (2014)

    Article  MathSciNet  Google Scholar 

  15. Ren, G., Ma, J., Du, J., Yu, H.: Hermite Polynomial’s Photon Added Coherent State and its Non-classical Properties. Int. J. Theor Phys. 55, 2071–2088 (2016)

    Article  MATH  Google Scholar 

  16. Hu, L.Y., Fan, H.Y.: Two-mode squeezed number state as a two-variable Hermite-polynomial excitation on the squeezed vacuum. J. Mod. Opt. 55, 2011–2024 (2008)

    Article  ADS  MATH  Google Scholar 

  17. Hu, L., Xu, X., Fan, H.: Statistical properties of photon-subtracted two-mode squeezed vacuum and its decoherence in thermal environment. J. Opt. Soc, Am. B. 27, 286–299 (2010)

    Article  ADS  Google Scholar 

  18. Khan, S., Pathan, M.A., Hassan, N.A.M., Yasmin, G.: Implicit summation formulae for Hermite and related polynomials. J. Math. Anal. Appl. 344, 408–416 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ren, G., Du, J., Yu, H., Zhang, X.L., Xu, Y.: Non-classical properties of state generated by the superposition of photon-added even/odd coherent states. Int J Theor Phys 52, 3564–3576 (2013)

    Article  MATH  Google Scholar 

  20. Barbieri, M., Spagnolo, N., Genoni, M.G., Ferreyrol, F., Blandino, R., Paris, M.G.A., Grangier, P., Tualle-Brouri, R.: Non-Gaussianity of quantum states: An experimental test on single-photon-added coherent states. Phys. Rev. A 82, 063833 (2010)

    Article  ADS  Google Scholar 

  21. Lvovsky, A.I., Hansen, H., Aichele, T., Benson, O., Mlynek, J., Schiller, S.: Quantum state reconstruction of the Single-Photon fock state. Phys. Rev. Lett. 87, 050402 (2001)

    Article  ADS  Google Scholar 

  22. Yang, Y., Li, F.L.: Nonclassicality of photon-subtracted and photon-added-then-subtracted Gaussian states. J. Opt. Soc, Am. B. 26, 830–835 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  23. Yang, Y., Li, F.L.: Entanglement Properties of non-Gaussian resources generated via photon subtraction and addition and continuous-variable quantum-teleportation improvement. Phys. Rev. A 80, 022315 (2009)

    Article  ADS  Google Scholar 

  24. Lee, S.Y., Nha, H.: Quantum state engineering by a coherent superposition of photon subtraction and addition. Phys. Rev. A 82, 053812 (2010)

    Article  ADS  Google Scholar 

  25. Hong-Yi, F., Li-Yun, H.: New approach for solving master equations in quantum optics and quantum statistics by virtue of thermo-entangled state representation. Commun. Theor. Phys. 51, 729–742 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  26. Fan, H.: Newton–leibniz integration for ket–bra operators in quantum mechanics (IV)—integrations within Weyl ordered product of operators and their applications. Ann. Phys. 323, 500–526 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Yu, T., Eberly, J.H.: Evolution from entanglement to decoherence of bipartite mixed X states. Quantum Inf. Comput. 7, 459 (2007)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work is supported by the Natural Science Foundation of the Anhui Higher Education Institutions of China (Grant No. KJ2016A672).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gang Ren.

Appendix A: Derivation of (12)

Appendix A: Derivation of (12)

Using the operator of the Hermite polynomials method, we have

$$\begin{array}{@{}rcl@{}} & &\sum\limits_{l = 0}^{m}\sum\limits_{k = 0}^{n}\binom{m}{l}\binom{n}{k}{\vdots} H_{l,k}\left( a,a^{\dag}\right) {\vdots} f^{l}g^{k}\\ & =&\sum\limits_{l = 0}^{m}\sum\limits_{k = 0}^{n}\binom{m}{l}\binom{n}{k}\colon a^{\dag k} a^{l}\colon f^{l}g^{k}\\ & =&\colon(ga^{\dag}+ 1)^{n}(fa+ 1)^{m}\colon, \end{array} $$
(56)

then we construct

$$\begin{array}{@{}rcl@{}} && \sum\limits_{m,n = 0}^{\infty}\frac{s^{m}t^{n}\colon(ga^{\dag}+ 1)^{n}(fa+ 1)^{m} \colon}{m!n!}\\ & =&e^{t(ga^{\dag}+ 1)}e^{s(fa+ 1)}\\ & =&e^{sf(a+\frac{1}{f})}e^{tg(a^{\dag}+\frac{1}{g})}e^{sftg}={\vdots} e^{^{sf(a+\frac{1}{f})+tg(a^{\dag}+\frac{1}{g})+sftg}}\vdots\\ & =&\sum\limits_{m,n = 0}^{\infty}\frac{(sf)^{m}(gt)^{n}}{m!n!}{\vdots} H_{m,n}\left( a+\frac{1}{f},a^{\dag}+\frac{1}{g}\right) \vdots. \end{array} $$
(57)

From (57), we see

$$ \colon(ga^{\dag}+ 1)^{n}(fa+ 1)^{m}\colon=f^{m}t^{n}{\vdots} H_{m,n}\left( a+\frac{1}{f},a^{\dag}+\frac{1}{g}\right) \vdots $$
(58)

Combining (56) and (58) we lead to

$$ \sum\limits_{l = 0}^{m}\sum\limits_{k = 0}^{n}\binom{m}{l}\binom{n}{k}{\vdots} H_{l,k}\left( a,a^{\dag}\right) {\vdots} f^{l}g^{k}=f^{m}t^{n}{\vdots} H_{m,n}\left( a+\frac{1}{f},a^{\dag}+\frac{1}{g}\right) $$
(59)

Since the both sides of (59) are in antinormal ordering. we restore to

$$ \sum\limits_{l = 0}^{m}\sum\limits_{k = 0}^{n}\binom{m}{l}\binom{n}{k}H_{l,k}\left( x,y\right) f^{l}g^{k}=f^{m}g^{n}H_{m,n}\left( x+\frac{1}{f},y+\frac{1}{g}\right) $$
(60)

1.1 Appendix B: Derivation of (14)

$$\begin{array}{@{}rcl@{}} H_{m,n}\left( \xi,\kappa\right) & =&\sum\limits_{l = 0}^{\min(m,n)}\frac{m!n!\left( -1\right)^{l}}{\left( n-l\right) !\left( m-l\right) !}\frac{\xi^{m-l}\kappa^{n-l}}{l!}\\ & =&\left( -1\right)^{n}\xi^{m-n}\sum\limits_{l = 0}^{n}\frac{m!n!}{l!\left( m-l\right) !}\frac{\left( -\xi\kappa\right)^{n-l}}{\left( n-l\right) !}\\ & =&n!\left( -1\right)^{n}\xi^{m-n}\sum\limits_{k = 0}^{n}\frac{m!}{\left( n-k\right) !\left( m-n+k\right) !}\frac{\left( -\xi\kappa\right)^{k}} {k!}\\ & =&n!\left( -1\right)^{n}\xi^{m-n}L_{n}^{m-n}\left( \xi\kappa\right) \end{array} $$
(61)

1.2 Appendix C: Derivation of (35)

Using basis functions in complete space, we have

$$\begin{array}{@{}rcl@{}} & &\int\frac{d^{2}z}{\pi}(z+i\sigma)^{m}(z^{\ast}+i\lambda)^{n}e^{-\left\vert z\right\vert^{2}}\\ & =&\sum\limits_{l = 0}^{+\infty}\sum\limits_{k = 0}^{+\infty}\left( \begin{array} [c]{c} n\\ l \end{array} \right) \left( \begin{array} [c]{c} m\\ k \end{array} \right) (i\lambda)^{n-l}(i\sigma)^{m-k}\int\frac{d^{2}z}{\pi}z^{k}z^{\ast l}e^{-\left\vert z\right\vert^{2}}\\ & =&\sum\limits_{l = 0}^{+\infty}\sum\limits_{k = 0}^{+\infty}\left( \begin{array} [c]{c} n\\ l \end{array} \right) \left( \begin{array} [c]{c} m\\ k \end{array} \right) (i\lambda)^{n-l}(i\sigma)^{m-k}\sqrt{l!k!}\delta_{l,k}, \end{array} $$
(62)

Introducing a special function for two-mode hermite polynomials, then we can get

$$\begin{array}{@{}rcl@{}} && \int\frac{d^{2}z}{\pi}(z+i\sigma)^{m}(z^{\ast}+i\lambda)^{n}e^{-\left\vert z\right\vert^{2}}\\ & =&i^{m+n}\sum\limits_{l = 0}^{+\infty}\frac{(-1)^{l}n!m!}{l!(m-l)!(n-l)!}\sigma^{m-l}\lambda^{n-l}=i^{m+n}H_{m,n}(\sigma,\lambda). \end{array} $$
(63)

The (35) is derived by simple subsitution.

1.3 Appendix D: Derivation of (37)

In the spirit of the operator of Hermite polynomial method, we consider

$$ \sum\limits_{l = 0}^{n}\left( \begin{array} [c]{c} n\\ l \end{array} \right) z^{n-l}q^{l}{\vdots} H_{l,m}(a,a^{\dag})\vdots=\sum\limits_{l = 0}^{n}\left( \begin{array} [c]{c} n\\ l \end{array} \right) z^{n-l}q^{l}\colon a^{\dag m}a^{l}\colon=\colon a^{\dag m} (z+qa)^{n}\colon, $$
(64)

Then we make the sum

$$\begin{array}{@{}rcl@{}} \sum\limits_{m,n = 0}^{\infty}\frac{s^{m}t^{n}}{m!n!}\colon a^{\dag m}(z+qa)^{n} \colon&=&e^{sa^{\dag}}e^{(z+qa)t}={\vdots} e^{(\frac{z}{q}+a)tq}e^{sa^{\dag}} e^{-stq}\vdots\\ &=&\sum\limits_{m,n = 0}^{\infty}\frac{s^{m}(tq)^{n}}{m!n!}{\vdots} H_{n,m}(\frac{z}{q}+a,a^{\dag})\vdots. \end{array} $$
(65)

Combining (64) and (65) we lead to

$$ \sum\limits_{l = 0}^{n}\left( \begin{array} [c]{c} n\\ l \end{array} \right) z^{n-l}q^{l}{\vdots} H_{l,m}(a,a^{\dag})\vdots=q^{n}{\vdots} H_{n,m}(\frac{z}{q}+a,a^{\dag})\vdots $$
(66)

Since the both sides of (66) are in antinormal ordering, we restore to

$$ \sum\limits_{l = 0}^{n}\left( \begin{array} [c]{c} n\\ l \end{array} \right) z^{n-l}q^{l}H_{l,m}(x,y)=q^{n}H_{n,m}(\frac{z}{q}+x,y) $$
(67)

1.4 Appendix E: Derivation of (46)

Using the operator of the Hermite polynomials method, we have

$$\begin{array}{@{}rcl@{}} & &\sum\limits_{n,m = 0}^{\infty}\frac{t^{n}s^{m}}{n!m!}H_{m,n}(x,y){\vdots} H_{m,n}(a^{\dag},a)\vdots\\ & =&\sum\limits_{n,m = 0}^{\infty}\frac{\colon s^{m}a^{\dag m}t^{n}a^{n}\colon} {n!m!}H_{m,n}(x,y)\\ & =&\colon\exp\left( -sta^{\dag}a+sa^{\dag}x+tay\right) \colon, \end{array} $$
(68)

where the symbol ⋮ ⋮ denotes the anti-normally ordered product of operators a and a.

Converting normal ordering to antinormal ordering, we lead to

$$ (E1)=\frac{1}{1-st}\vdots\frac{\exp\left( tay+a^{\dag}sx-sxty-sta^{\dag} a\right)} {1-st}\vdots. $$
(69)

Letting \(a^{\dag }\rightarrow x^{\prime },a\rightarrow y^{\prime }, \) we obtain

$$ \sum\limits_{n,m = 0}^{\infty}\frac{t^{n}s^{m}}{n!m!}H_{m,n}(x,y)H_{m,n}(x^{^{\prime}} ,y^{^{\prime}})=\frac{1}{1-st}\frac{\exp\left( ty^{\prime}y+sx^{\prime} x-sxty-stx^{\prime}y^{\prime}\right)} {1-st}. $$
(70)

Using the formula

$$ \sum\limits_{m = 0}^{\infty}\frac{s^{m}}{m!}H_{m,n}(x,y)=\left( y-s\right)^{n}e^{sx} $$
(71)

we have

$$ \sum\limits _{m = 0}^{\infty}\frac{s^{m}}{m!}H_{m,n}(x,y)H_{m,n}(x^{^{\prime}} ,y^{^{\prime}})=(-s)^{n}H_{n,n}[i(\frac{y}{s}-x^{^{\prime}}),i(y^{^{\prime}} -sx)]e^{sx^{^{\prime}}x}. $$
(72)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Cc., Du, Jm. & Ren, G. Amplitude Damping of Hermite-Polynomial-Field Excited Coherent State. Int J Theor Phys 58, 261–274 (2019). https://doi.org/10.1007/s10773-018-3928-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3928-7

Keywords

Navigation