Skip to main content
Log in

Three-Party Quantum Key Agreement Protocol with Seven-Qubit Entangled States

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

A new three-party quantum key agreement protocol based on seven-qubit states is proposed. In this protocol, each participant adopts different encryption methods to transmit a secret key of the same length. Subsequently, the participants utilize joint measurement to gain the ultimate shared secret key. No participant can determine the ultimate shared key by himself/herself. In addition, the proposed three-party quantum key agreement protocol could resist several well-known attacks. Compared with typical quantum key agreement protocols, our proposed three-party quantum key agreement protocol is more efficient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Zhou, N., Zeng, G., Xiong, J.: Quantum key agreement protocol. Electron. Lett. 40, 1149–1150 (2004)

    Article  Google Scholar 

  2. Hsueh, C.C., Chen, C.Y.: Quantum key agreement protocol with maximally entangled states. Proc. Inf. Sec Conf. In: Proceedings of the 14th Information Security Conference, pp 236–242. National Taiwan University of Science and Technology, Taipei (2004)

  3. Tsai, C.W., Chong, S.K., Hwang, T.: Comment on quantum key agreement protocol with maximally entangled states. In: Proceedings of the 20th Cryptology and Information Security Conference, pp 210–213. National Chiao Tung University, Hsinchu (2010)

  4. Chong, S.K., Tsai, C.W., Hwang, T.: Improvement on quantum key agreement protocol with maximally entangled state. Int. J. Theor. Phys. 50, 1793–1802 (2011)

    Article  Google Scholar 

  5. Chong, S.K., Hwang, T.: Quantum key agreement protocol based on BB84. Opt. Comm. 283, 1192–1195 (2010)

    Article  ADS  Google Scholar 

  6. Deng, F.G., Long, G.L., Wang, Y., Xiao, L.: Increasing the efficiencies of random-choice-based quantum communication protocols with delayed measurement. Chin. Phys. Lett. 21, 2097 (2004)

    Article  ADS  Google Scholar 

  7. Shi, R.H., Zhong, H.: Multi-party quantum key agreement with bell states and bell measurements. Quantum Inf. Process. 12, 921–932 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  8. Liu, B., Gao, F., Huang, W., Wen, Q.-Y.: Multiparty quantum key agreement with single particles. Quantum Inf. Process. 12, 1797–1805 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  9. Huang, W., Wen, Q.-Y., Liu, B., Su, Q., Gao, F.: Cryptanalysis of a multi-party quantum key agreement protocol with single particles. Quantum Inf. Process. 13, 1651–1657 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  10. Shukla, C., Alam. N., Pathak, A.: Protocols of quantum key agreement solely using Bell states and Bell measurement. Quantum Inf. Process. 13, 2391–2405 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  11. Liu, B., Gao, F., Huang, W.: Multiparty quantum key agreement with single particles. Quantum Inf. Process. 12, 1797–1805 (2013)

    Article  ADS  MathSciNet  Google Scholar 

  12. Zhu, Z.C., Hu, A.Q., Fu, A.M.: Improving the security of protocols of quantum key agreement solely using Bell states and Bell measurement. Quantum Inf. Process. 14, 4245–4254 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  13. Huang, W., Su, Q., Xu, B.: Improved multiparty quantum key agreement in travelling mode. Sci. China. Phys: Mech. Astron. 59, 120311 (2016)

    Article  Google Scholar 

  14. Sun, Z.W., Zhang, C., Wang, P., Yu, J.P., Zhang, Y., Long, D.Y.: Multi-party quantum key agreement by an entangled six-qubit state. Int. J. Theor. Phys. 55, 1920–1929 (2016)

    Article  Google Scholar 

  15. Shen, D.S., Ma, W.P., Wang, L.L.: Two-party quantum key agreement with four-qubit cluster states. Quantum Inf. Process. 13, 2313–2324 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  16. Sun, Z.W., Yu, J.P., Wang, P.: Efficient multi-party quantum key agreement by cluster states. Quantum Inf. Process. 15, 373–384 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  17. He, Y.F., Ma, W.P.: Quantum key agreement protocols with four-qubit cluster states. Quantum Inf. Process. 14, 3483–3498 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  18. Xu, G.B., Wen, Q.Y., Gao, F., Qin, S.J.: Novel multiparty quantum key agreement protocol with GHZ states. Quantum Inf. Process. 13, 2587–2594 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  19. He, Y.F., Ma, W.P.: Two-party quantum key agreement based on four-particle GHZ states. Int. J. Quantum Inf. 14, 1650007 (2016)

    Article  MathSciNet  Google Scholar 

  20. He, Y.F., Ma, W.P.: Two-party quantum key agreement with five-particle entangled states. Int. J. Quantum Inf. 15, 1750018 (2017)

    Article  MathSciNet  Google Scholar 

  21. Xu, L., Zhao, Z.: Quantum private comparison protocol based on the entanglement swapping between χ + state and W-Class state. Quantum Inf. Process. 16, 1–15 (2017)

    Article  MathSciNet  Google Scholar 

  22. Min, S.Q., Chen, H.Y., Gong, L.H.: Novel multi-party quantum key agreement protocol with G-Like states and Bell states. Int. J. Theor. Phys. 57, 1811–1822 (2018)

    Article  MathSciNet  Google Scholar 

  23. Chou, Y.H., Zeng, G.J., Chang, Z.H.: Dynamic group multi-party quantum key agreement. Sci. Rep. 8, 4633 (2018)

    Article  ADS  Google Scholar 

  24. Zha, X., Song, H., Qi, J.: A maximally entangled seven-qubit state. J. Phys. A: Math. Theor. 45, 255302 (2012)

    Article  ADS  MathSciNet  Google Scholar 

  25. Zha, X., Yuan, C., Zhang, Y.: Generalized criterion for a maximally multi-qubit entangled state. Laser Phys. Lett. 10, 045201 (2013)

    Article  ADS  Google Scholar 

  26. Borras, A., Plastino, A.R., Batle, J.: Multiqubit systems: highly entangled states and entanglement distribution. J. Phys. A: Math. Theor. 40, 13407 (2007)

    Article  ADS  MathSciNet  Google Scholar 

  27. Gisin, N., Fasel, S., Kraus, B., et al.: Trojan-horse attacks on quantum-key-distribution systems. Phys. Rev. A 73, 022320 (2006)

    Article  ADS  Google Scholar 

  28. Cai, Q.Y.: Eavesdropping on the two-way quantum communication protocols with invisible photons. Phys. Lett. A 351, 23–25 (2006)

    Article  ADS  Google Scholar 

  29. Deng, F.G., Li, X.H., Zhou, H.Y., et al.: Improving the security of multiparty quantum secret sharing against Trojan horse attack. Phys. Rev. A 72, 044302 (2005)

    Article  ADS  Google Scholar 

  30. Li, X.H., Deng, F.G., Zhou, H.Y.: Improving the security of secure direct communication based on the secret transmitting order of particles. Phys. Rev. A 74, 054302 (2006)

    Article  ADS  Google Scholar 

  31. Ma, H., Huang, P., Bao, W., et al.: Continuous-variable quantum identity authentication based on quantum teleportation. Quantum Inf. Process. 15, 2605–2620 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  32. Hong, C., Heo, J., Jang, J.G., et al.: Quantum identity authentication with single photon. Quantum Inf. Process. 16, 236 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  33. Cabello, A.: Quantum key distribution in the Holevo limit. Phys. Rev. Lett. 85, 5633–5638 (2000)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Grant No. 61561033), and the Natural Science Foundation of Jiangxi Province (Grant No. 20171BAB202002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-Hua Gong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, NR., Min, SQ., Chen, HY. et al. Three-Party Quantum Key Agreement Protocol with Seven-Qubit Entangled States. Int J Theor Phys 57, 3505–3513 (2018). https://doi.org/10.1007/s10773-018-3865-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-018-3865-5

Keywords

Navigation