Skip to main content
Log in

Quantum identity authentication with single photon

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

Quantum identity authentication with single photons is proposed in the paper. It can verify a user’s identity without exposing to an authentication key information. The protocol guarantees high efficiency in that it can verify two bits of authentication information using just a single photon. The security of our authentication scheme is analyzed and confirmed in the case of a general attack. Moreover, the proposed protocol is practicable with current technology. Our quantum identity authentication protocol does not require quantum memory registration and any entangled photon sources.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Stinson, D.R.: Cryptography: Theory and Practice, 3rd edn. CRC Press, Boca Raton (2005)

    MATH  Google Scholar 

  2. Forouzan, B.A.: Cryptography and Network Security (international edition). McGraw Hill, New York (2008)

    Google Scholar 

  3. Kang, M.S., Hong, C.H., Heo, J., Lim, J.I., Yang, H.J.: Controlled mutual quantum entity authentication using entanglement swapping. Chin. Phys. B 24, 090306 (2015)

    Article  Google Scholar 

  4. Authentication in an Internet Banking Environment. Federal Financial Institutions Examination Council Web. http://www.ffiec.gov/ (2008). Accessed 10 May 2016

  5. Kanamori, Y., Yoo, S.M., Gregory, D.A., Sheldon, F.T.: Authentication protocol using quantum superposition states. Int. J. Netw. Secur. 9, 101 (2009). doi:10.6633/IJNS

    Google Scholar 

  6. Bennet, C. H., Brassard, G.: Proceedings of IEEE International Conference on Computers, Systems, and Signal Processing, IEEE, New York, p. 175 (1984)

  7. DuŜek, M., Haderka, O., Hendrych, M., Mayska, R.: Quantum identification system. Phys. Rev. A 60, 149 (1999)

    Article  ADS  Google Scholar 

  8. Mihara, T.: Quantum identification schemes with entanglements. Phys. Rev. A 65, 052326 (2002)

    Article  ADS  Google Scholar 

  9. Zhang, Z.S., Zeng, G.H., Zhou, N.R., Xiong, J.: Quantum identity authentication based on ping–pong technique for photons. Phys. Lett. A 356, 199 (2006)

    Article  ADS  MATH  Google Scholar 

  10. Huang, P., Zhu, J., Lu, Y., Zeng, G.H.: Quantum identity authentication using Gaussian-modulated squeezed states. Int. J. Quantum Inf. (2011). doi:10.1142/S0219749911007745

    MATH  Google Scholar 

  11. Svozil, K.: Feasibility of the interlock protocol against man-in-the-middle attacks on quantum cryptography. Int. J. Quantum Inf. 3, 649 (2005)

    Article  Google Scholar 

  12. Kuhn, D.R.: A hybrid authentication protocol using quantum entanglement and symmetric cryptography. quant-ph/0301150 (2003)

  13. Zeng, G., Zhang, W.: Identity verification in quantum key distribution. Phys. Rev. A 61, 022303 (2000)

  14. Hwang, W.-Y.: Quantum key distribution with high loss: toward global secure communication. Phys. Rev. Lett. 91, 057901 (2003)

    Article  ADS  Google Scholar 

  15. Lo, H.-K.: Quantum key distribution with vacua or dim pulses as decoy states. In: Proceedings of IEEE ISIT. IEEE, p. 137 (2004)

  16. Lo, H.-K., Ma, X., Chen, K.: Decoy state quantum key distribution. Phys. Rev. Lett. 94, 230504 (2005)

    Article  ADS  Google Scholar 

  17. Wang, X.-B.: Beating the pns attack in practical quantum cryptography. Phys. Rev. Lett. 94, 230503 (2005)

    Article  ADS  Google Scholar 

  18. Wang, X.-B.: A decoy-state protocol for quantum cryptography with 4 intensities of coherent states. Phys. Rev. A 72, 012322 (2005)

    Article  ADS  Google Scholar 

  19. Harrington, J.W., Ettinger, J.M., Hughes, R.J., Nordholt, J.E.: Enhancing practical security of quantum key distribution with a few decoy states. quant-ph/0503002 (2005)

  20. Zhao, Y., Qi, B., Ma, X., Lo, H.-K., Qian, L.: Experimental quantum key distribution with decoy states. Phys. Rev. Lett. 96, 070502 (2006)

    Article  ADS  Google Scholar 

  21. Zhao, Y., Qi, B., Ma, X., Lo, H.-K., Qian, L.: Simulation and implementation of decoy state quantum key distribution over 60 km telecom fiber. In: Proceedings of IEEE ISIT. IEEE, p. 2094 (2006)

  22. Rosenberg, D., Harrington, J.W., Rice, P.R., Hiskett, P.A., Peterson, C.G., Hughes, R.J., Lita, A.E., Nam, S.W., Nordholt, J.E.: Long-distance decoy-state quantum key distribution in optical fiber. Phys. Rev. Lett. 98, 010503 (2007)

    Article  ADS  Google Scholar 

  23. Peng, C.-Z., Zhang, J., Yang, D., Gao, W.-B., Ma, H.-X., Yin, H., Zeng, H.-P., Yang, T., Wang, X.-B., Pan, J.-W.: Experimental long-distance decoy-state quantum key distribution based on polarization encoding. Phys. Rev. Lett. 98, 010505 (2007)

    Article  ADS  Google Scholar 

  24. Ursin, R., Tiefenbacher, F., Schmitt-Manderbach, T., Weier, H., Scheidl, T., Lindenthal, M., Blauensteiner, B., Jennewein, T., Perdigues, J., Trojek, P., Füerst, B.M., Meyenburg, M., Rarity, J., Sodnik, Z., Barbieri, C., Weinfurter, H., Zeilinger, A.: Entanglement-based quantum communication over 144 km. Nat. Phys. 3, 481 (2007)

    Article  Google Scholar 

  25. Yuan, Z.L., Sharpe, A.W., Shields, A.J.: Unconditionally secure one-way quantum key distribution using decoy pulses. Appl. Phys. Lett. 90, 011118 (2007)

    Article  ADS  Google Scholar 

  26. Ma, H., Huang, P., Bao, W., Zeng, G.: Continuous-variable quantum identity authentication based on quantum teleportation. Quantum Inf. Process 15, 2605 (2016)

  27. Brassard, G., Lütkenhaus, N., Mor, T., Sanders, B.C.: Security aspects of practical quantum cryptography. Phys. Rev. Lett. 85, 1330 (2000)

    Article  ADS  MATH  Google Scholar 

  28. Huttner, B., Imoto, N., Gisin, N., Mor, T.: Quantum cryptography with coherent states. Phys. Rev. A 51, 1863 (1995)

    Article  ADS  Google Scholar 

  29. Lütkenhaus, N., Jahma, M.: Quantum key distribution with realistic states: photon-number statistics in the photon-number splitting attack. New J. Phys. 4, 44 (2002)

    Article  Google Scholar 

  30. Lütkenhaus, N.: Security against individual attacks for realistic quantum key distribution. Phys. Rev. A 61, 052304 (2000)

    Article  ADS  Google Scholar 

  31. Félix, S., Gisin, N., Stefanov, A., Zbinden, H.: Faint laser quantum key distribution: eavesdropping exploiting multiphoton pulses. J. Mod. Opt. 48(13), 2009 (2001)

    Article  ADS  MATH  Google Scholar 

  32. Inamori, H., Lütkenhaus, N., Mayers, D.: Unconditional security of practical quantum key distribution. Eur. Phys. J. D 41, 599 (2007)

    Article  ADS  Google Scholar 

  33. Koashi, M., Preskill, J.: Secure quantum key distribution with an uncharacterized source. Phys. Rev. Lett. 90, 057902 (2003)

    Article  ADS  Google Scholar 

  34. MagiQ Technologies. www.magiqtech.com

  35. ID Quantique SA. www.idquantique.com

  36. Scully, M.O., Zubairy, M.S.: Quantum Optics, Chapter 2.2. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  37. Lo, H.-K., Lütkenhaus, N.: Quantum cryptography: from theory to practice. Phys. Can. 63, 191 (2007)

    Google Scholar 

  38. Ma, X., Qi, B., Zhao, Y., Lo, H.-K.: Practical decoy state for quantum key distribution. Phys. Rev. A 72, 012326 (2005)

    Article  ADS  Google Scholar 

  39. Gobby, C., Yuan, Z.L., Shields, A.J.: Quantum key distribution over 122 km of standard telecom fiber. Appl. Phys. Lett. 84, 3762 (2004)

    Article  ADS  Google Scholar 

  40. Brassard, G., Salvail, L.: Secret-key reconciliation by public discussion. Advances in Cryptology EUROCRYPT’93. Springer, Berlin (1993)

  41. Buttler, W.T., Lamoreaux, S.K., et al.: Fast, efficient error reconciliation for quantum cryptography. Phys. Rev. A 67, 52303 (2003)

    Article  ADS  Google Scholar 

  42. Jouguet, P., Kunz-Jacques, S.: High performance error correction for quantum key distribution using polar codes. Quantum Inf. Comput. 14, 329–338 (2013)

    MathSciNet  Google Scholar 

  43. Johnson, J.S.: An Analysis of Error Reconciliation Protocols for use in Quantum Key Distribution, Ph.D. thesis, Air Force Institute of Technology (2012)

  44. Mayers, D.: Unconditional security in quantum cryptography. J. ACM 48(3), 351406 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  45. Lo, H.-K.: Getting something out of nothing. Quantum Inf. Comput. 5, 413–418 (2005)

    MathSciNet  MATH  Google Scholar 

  46. Shor, P.W., Preskill, J.: Simple proof of security of the BB84 quantum key distribution protocol. Phys. Rev. Lett. 85, 441 (2000)

    Article  ADS  Google Scholar 

  47. Koashi, M.: Unconditional security proof of quantum key distribution and the uncertainty principle. J. Phys. Conf. Ser. 36, 98 (2006)

    Article  Google Scholar 

  48. Villoresi, P., Jennewein, T., Tamburini, F., Aspelmeyer, M., Bonato, C., Ursin, R., Pernechele, C., Luceri, V., Bianco, G., Zeilinger, A., Barbieri, C.: Experimental verification of the feasibility of a quantum channel between space and Earth. New J. Phys. 10, 033038 (2008)

  49. Yin, J., Cao, Y., Liu, S.B., Pan, G.S., Wang, J.H., Yang, T., Zhang, Z.P., Yang, F.M., Chen, Y.A., Peng, C.Z., Pan, J.W.: Experimental quasi-single-photon transmission from satellite to earth. Opt. Express 21, 20032 (2013)

  50. Dequal, D., Vallone, G., Bacco, D., Gaiarin, S., Luceri, V., Bianco, G., Villoresi, P.: Experimental single-photon exchange along a space link of 7000 km. Phys. Rev. A 93, 010301 (2016)

  51. Goldreich, O.: Foundations of Cryptography I: Basic Tools. Cambridge University Press, Cambridge. ISBN 978-0-511-54689-1 (2001)

Download references

Acknowledgements

This work was supported by the ICT R&D program of MSIP/IITP [1711028311, Reliable crypto-system standards and core technology development for secure quantum key distribution network] and the R&D Convergence program of NST (National Research Council of Science and Technology) of Republic of Korea (Grant No. CAP-18-08-KRISS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chang ho Hong.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hong, C.h., Heo, J., Jang, J.G. et al. Quantum identity authentication with single photon. Quantum Inf Process 16, 236 (2017). https://doi.org/10.1007/s11128-017-1681-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1681-0

Keywords

Navigation