Skip to main content
Log in

An Improved Filtering Method for Quantum Color Image in Frequency Domain

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper we investigate the use of quantum Fourier transform (QFT) in the field of image processing. We consider QFT-based color image filtering operations and their applications in image smoothing, sharpening, and selective filtering using quantum frequency domain filters. The underlying principle used for constructing the proposed quantum filters is to use the principle of the quantum Oracle to implement the filter function. Compared with the existing methods, our method is not only suitable for color images, but also can flexibly design the notch filters. We provide the quantum circuit that implements the filtering task and present the results of several simulation experiments on color images. The major advantages of the quantum frequency filtering lies in the exploitation of the efficient implementation of the quantum Fourier transform.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Feynman, R.: Simulating physics with computers. Int. J. Theor. Phys. 21, 467–488 (1982)

    Article  MathSciNet  Google Scholar 

  2. Bernstein, E., Vazirani, U.: Quantum complexity theory. SIAM J. Comput. 26(5), 1411–1473 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  3. Shor, P.W.: Algorithms for quantum computation: discrete logarithms and factoring. In: Proceeding of 35th Annual Symposium Foundations of Computer Science, pp 124–134. IEEE Computer Society Press, Los Almitos, CA (1994)

  4. Grover, L.: A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th Annual ACM Symposium on the Theory of Computing, pp 212–219 (1996)

  5. Wang, S., Song, X.H., Niu, X.M.: A novel encryption algorithm for quantum images based on quantum wavelet transform and diffusion. Intell. Data Anal. Appl. II (298), 243–250 (2014)

    Google Scholar 

  6. Hua, T., Chen, J., Pei, D., et al.: Quantum image encryption algorithm based on image correlation decomposition. Int. J. Theor. Phys. 54(2), 526–537 (2015)

    Article  MATH  Google Scholar 

  7. Zhou, R.G., Wu, Q., Zhang, M.Q., et al.: A quantum image encryption algorithm based on quantum image geometric transformations. Pattern Recogn. 321, 480–487 (2012)

    Google Scholar 

  8. Zhou, R.G., Wu, Q., Zhang, M.Q., et al.: Quantum image encryption and decryption algorithms based on quantum image geometric transformations. Int. J. Theor. Phys. 52, 1802–1817 (2013)

    Article  MathSciNet  Google Scholar 

  9. Iliyasu, A.M., Le, P.Q., Dong, F., Hirota, K.: Watermarking and authenticationof quantum images based on restricted geometric transformations. Inf. Sci. 186, 126–149 (2012)

    Article  MATH  Google Scholar 

  10. Yan, F., Iliyasu, A.M., Sun, B., et al.: A duple watermarking strategy for multi-channel quantum images. Quantum Inf. Process. 14(5), 1675–1692 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Zhang, W.W., Gao, F., Liu, B., et al.: A quantum watermark protocol. Int. J. Theory Phys. 52, 504–513 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  12. Zhang, Y., Lu, K., Xu, K., Gao, Y.H., Wilson, R.: Local feature point extraction for quantum images. Quantum Inf. Process. 14(5), 1573–1588 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Venegas-Andraca, S.E., Ball, J.L.: Processing images in entangled quantum systems. Quantum Inf. Process. 9(1), 1–11 (2010)

    Article  MathSciNet  Google Scholar 

  14. Li, H.S., Zhu, Q.X., Lan, S., Shen, C.Y., Zhou, R.G., Mo, J.: Image storage, retrieval, compression and segmentation in a quantum system. Quantum Inf. Process. 12(6), 2269–2290 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Caraiman, S., Manta, V.: Histogram-based segmentation of quantum images. Theor. Comput. Sci. 529, 46–60 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  16. Jiang, N., Wu, W.Y., Wang, L.: The quantum realization of Arnold and Fibonacci image scrambling. Quantum Inf. Process. 13(5), 1223–1236 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Jiang, N., Wang, L.: Analysis and improvement of the quantum Arnold image scrambling. Quantum Inf. Process. 13(7), 1545–1551 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Jiang, N., Wang, L., Wu, W.Y.: Quantum Hilbert image scrambling. Int. J. Theor. Phys. 53(7), 2463–2484 (2014)

    Article  MATH  Google Scholar 

  19. Zhang, Y., Lu, K., Gao, Y.H., Wang, M.: NEQR: a novel enhanced quantum representation of digital images. Quantum Inf. Process. 12(12), 2833–2860 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Jiang, N., Wu, W.Y., Wang, L., Zhao, N.: Quantum image pseudocolor coding based on the density stratified method. Quantum Inf. Process. 14(5), 1735–1755 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Le, P.Q., Iliyasu, A.M., Dong, F.Y., Hirota, K.: Fast geometric transformation on quantum images. IAENG Int. J. Appl. Math. 40(3), 113–123 (2010)

    MathSciNet  MATH  Google Scholar 

  22. Zhou, R.G., Tan, C., Ian, H.: Global and local translation designs of quantum image based on FRQI. Int. J. Theor. Phys. 56(4), 1383–1398 (2017)

    Article  MathSciNet  Google Scholar 

  23. Jiang, N., Wang, L.: Quantum image scaling using nearest neighbor interpolation. Quantum Inf. Process. 14(5), 1559–1571 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Yan, F., Abdullah, M.I., Huamin, Y., et al.: Strategy for quantum image stabilization. Sci. China Inf Sci. 59, 052102 (2016)

    Article  Google Scholar 

  25. Yan, F., Abdullah, M.I., Phuc, Q.L.: Quantum image processing: a review of advances in its security technologies. Int. J. Quantum Inf. 15, 1730001 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Chris, L.: Quantum convolution and quantum correlation algorithms are physically impossible, pp. 1–10 (2003). arXiv:quant-ph/0309070

  27. Simona, C., Vasile, I.M.: Quantum image filtering in the frequency domain. Adv. Elect. Comput. E. 13(3), 77–84 (2013)

    Article  Google Scholar 

  28. Caraiman, S., Manta, V.: Image processing using quantum computing. In: The 16th International Conference on System Theory, Control and Computing (ICSTCC), pp 1–6 (2012)

  29. Le, P.Q., Dong, F.Y., Hirota, K.: A flexible representation of quantum images for polynomial preparation, image compression and processing operations. Quantum Inf. Process. 10(1), 63–84 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Simona, C., Vasile, M.: Image segmentation on a quantum computer. Quantum Inf. Process. 14(5), 1693–1715 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zhang, Y., Lu, K., Gao, Y., Wang, M.: NEQR: a novel enhanced quantum representation of digital images. Quantum Inf. Process. 12(8), 2833–2860 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  32. Wang, D., Liu, Z., Zhu, W., et al.: Design of quantum comparator based on extended general Toffoli gates with multiple targets. Comput. Sci. 39(9), 302–306 (2012)

    Google Scholar 

  33. Yan, F., Iliyasu, A.M., Venegas-Andraca, S.E.: A survey of quantum image representations. Quantum Inf. Process. 15(1), 1–35 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  34. Nielsen, M.A. , Chuang, I.L.: Quantum computation and quantum information, pp 216–221. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

Download references

Acknowledgements

The authors appreciate the kind comments and constructive suggestions of the anonymous reviewers. This work was supported by the Natural Science Foundation of Heilongjiang Province of China (Grant No. F2015021) and the PetroChina Innovation Foundation (2016D-5007-0302).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Panchi Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, P., Xiao, H. An Improved Filtering Method for Quantum Color Image in Frequency Domain. Int J Theor Phys 57, 258–278 (2018). https://doi.org/10.1007/s10773-017-3561-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-017-3561-x

Keywords

Navigation