Skip to main content
Log in

Quantifying Contextuality of Empirical Models in Terms of Trace-Distance

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In order to quantify contextuality of empirical models, the quantity of contextuality (QoC) of empirical models is introduced in terms of the trace-distance. Let Q C(e) denote the QoC of an empirical model e. The following conclusions are proved. (i) An empirical model e is non-contextual if and only if Q C(e)=0, and then it is contextual if and only if Q C(e)>0; (ii) the QoC function QC is convex, contractive and continuous. Finally, the QoC of some famous models is computed, including PM-isotropic boxes P M α, M-isotropic boxes M α, C H n -isotropic boxes \(CH_{n}^{\alpha }\) as well as K box, where α∈[0,1]. Moreover, P M α is non-contextual if and only if \(\alpha \in [\frac {1}{6},\frac {5}{6}]\); M α is non-contextual if and only if \(\alpha \in [0,\frac {4}{5}]\); when n is even, \(CH_{n}^{\alpha }\) is non-contextual if and only if \(\alpha \in [\frac {1}{n},\frac {n-1}{n}]\), and when n is odd, \(CH_{n}^{\alpha }\) is non-contextual if and only if \(\alpha \in [0,\frac {n-1}{n}]\). The most important thing is that it is very easy to compare the QoC of any two isotropic boxes discussed in the above.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Notes

  1. We could allow a different set of outcomes for each individual measurement, but we will not need this extra generality.

References

  1. Specker, E.: Die logik nicht gleichzeitig entscheidbarer aussagen. Dialectica 14, 239–246 (1960)

    Article  MathSciNet  Google Scholar 

  2. Cabello, A., Severini, S., Winter, A.: (Non-)Contextuality of physical theories as an axiom. arXiv:1010.2163, pp. 1–8 (2010)

  3. Kochen, S., Specker, E. P.: The problem of hidden variables in quantum mechanics. J. Math. Mech. 17, 59–87 (1967)

    MathSciNet  MATH  Google Scholar 

  4. DiVincenzo, D. P., Peres, A.: Quantum code words contradict local realism. Phys. Rev. A 55, 4089–4092 (1997)

    Article  ADS  Google Scholar 

  5. Tavakoli, A., Hameedi, A., Marques, B., Bourennane, M.: Quantum random access codes using single d-level systems. Phys. Rev. Lett. 114, 170502 (2015)

    Article  ADS  Google Scholar 

  6. Nagata, K.: Kochen-specker theorem as a precondition for secure quantum key distribution. Phys. Rev. A 72, 012325 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  7. Aharon, N., Vaidman, L.: Quantum advantages in classically defined tasks. Phys. Rev. A 77, 052310 (2008)

    Article  ADS  Google Scholar 

  8. Howard, M., Wallman, J., Veitch, V., Emerson, J.: Contextuality supplies the ‘magic’ for quantum computation. Nature 510, 351–355 (2014)

    ADS  Google Scholar 

  9. Amselem, E., Danielsen, L. E., López-tarrida, A.J., Portillo, J.R., Bourennane, M., Cabello, A.: Experimental fully contextual correlations. Phys. Rev. Lett. 108, 200405 (2012)

    Article  ADS  Google Scholar 

  10. Kurzyński, P., Ramanathan, R., Kaszlikowski, D.: Entropic test of quantum contextuality. Phys. Rev. Lett. 109, 020404 (2012)

    Article  ADS  Google Scholar 

  11. de Barros, J. A., Dzhafarov, E. N., Kujala, J. V., Oas, G.: Measuring observable quantum contextuality. In: Atmanspacher, H., Filk, E.T. (eds.) Quantum Interaction, pp. 36–47. Springer Int. Publ. (2015)

  12. Pan, A.K., Mandal, K.: Quantum contextuality for a three-level system Sans Realist model. Int. J. Theor. Phys. 55(8), 3472–3478 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Heilmann, R., Gräfe, M., Nolte, S., et al.: A novel integrated quantum circuit for high-order W-state generation and its highly precise characterization. Sci. Bull. 60 (1), 96–100 (2015)

    Article  Google Scholar 

  14. Ding, D.S., Zhang, W., Shi, S., et al.: High-dimensional entanglement between distant atomic ensemble memories. Light: Sci. Appl. 5, e16157 (2016)

    Article  Google Scholar 

  15. Wang, Z., Zhang, C., Huang, Y. F., et al.: Experimental verification of genuine multipartite entanglement without shared reference frames. Sci. Bull. 61(9), 714–719 (2016)

    Article  Google Scholar 

  16. Xu, J. S., Li, C. F.: Quantum integrated circuit: classical characterization. Sci. Bull. 60(1), 141–141 (2015)

    Article  Google Scholar 

  17. Cao, D. Y., Liu, B. H., Wang, Z., et al.: Multiuser-to-multiuser entanglement distribution based on 1550 nm polarization-entangled photons. Sci. Bull. 60(12), 1128–1132 (2015)

    Article  Google Scholar 

  18. Gao, M., Lei, F. C., Du, C. G., et al.: Dynamics and entanglement of a membrane-in-the-middle optomechanical system in the extremely-large-amplitude regime. Sci. China-Phys. Mech. Astr. 59(1), 610301 (2016)

    Article  Google Scholar 

  19. Li, T., Yin, Z. Q.: Quantum superposition, entanglement, and state teleportation of a microorganism on an electromechanical oscillator. Sci. Bull. 61(2), 163–171 (2016)

    Article  MathSciNet  Google Scholar 

  20. Deng, F.G., Ren, B.C., Li, X.H: Quantum hyperentanglement and its applications in quantum information processing. Sci. Bull. 62(1), 46–68 (2017)

    Article  Google Scholar 

  21. Du, F. F., Deng, F. G.: Heralded entanglement concentration for photon systems with linear-optical elements. Sci. China-Phys. Mech. Astr. 58(4), 1–8 (2015)

    Article  Google Scholar 

  22. Wang, R., Li, D., Zhang, F., et al.: Quantum dialogue based on hypertanglement against collective noise. Int. J. Theor. Phys. 55(8), 3607–3615 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Long, G.L., Liu, X.S: Theoretically efficient high-capacity quantum-key-distribution scheme. Phys. Rev. A 65(3), 032302 (2002)

    Article  ADS  Google Scholar 

  24. Grudka, A., Horodecki, K., Horodecki, M., Horo-decki, P., Horodecki, R., Joshi, P., Klobus, W., Wójcik, A.: Quantifying contextuality. Phys. Rev. Lett. 112, 120401 (2014)

    Article  ADS  Google Scholar 

  25. Grudka, A., Horodecki, K., Horodecki, M., Horodecki, P., Horodecki, R., Joshi, P., Klobus, W., Wójcik, A.: Quantifying contextuality: supplementary materical. Phys. Rev. Lett. 112, 1–18 (2014)

    Article  Google Scholar 

  26. Svozil, K.: How much contextuality? Nat. Comp. 11, 261–265 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  27. Oas, G., de Barros, J. A., Carvalhaes, C.: Exploring non-signalling polytopes with negative probability. Phys. Scr. T 163, 014034 (2014)

  28. de Barros, J.A., Kujala, J.V., Oas, G: Negative probabilities and contextuality. J. Math. Psy. doi:10.1016/j.jmp.2016.04.014

  29. Abramsky, S., Brandenburger, A.: The sheaf-theoretic structure of non-locality and contextuality. New J. Phys. 13, 113036 (2011)

    Article  ADS  Google Scholar 

  30. Vidal, G., Tarrach, R.: Robustness of entanglement. Phys. Rev. A 59, 141–155 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  31. Meng, H. X., Cao, H. X., Wang, W. H.: The robustness of contextuality and the contextuality cost of empirical models. Sci. China-Phys. Mech. Astron. 59, 640303 (2016)

    Article  Google Scholar 

  32. Meng, H. X., Cao, H. X., Wang, W. H., Chen, L., Fan, Y. J.: Continuity of robustness of contextuality of empirical models. Sci. China-Phys. Mech. Astron. 59, 100311 (2016)

    Article  Google Scholar 

  33. Meng, H. X., Cao, H. X., Wang, W. H., Chen, L., Fan, Y. J.: Erratum to: Continuity of the robustness of contextuality of empirical models [Sci. China-Phys. Mech. Astron. 59, 100311 (2016)]. Sci. China-Phys. Mech. Astron. 60, 010351 (2017). doi:10.1007/s11433-016-0301-4

    Article  Google Scholar 

  34. Meng, H. X., Cao, H. X., Wang, W. H., Fan, Y. J., Chen, L.: Generalized robustness of contextuality. Entropy 18, 297 (2016)

    Article  ADS  Google Scholar 

  35. Guo, Z. H., Cao, H. X., Chen, Z. L.: Distinguishing classical correlations from quantum correlations. J. Phys. A: Math. Theor. 45, 145301 (2012)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Peres, A.: Incompatible results of quantum measurements. Phys. Lett. A 151, 107–108 (1990)

    Article  ADS  MathSciNet  Google Scholar 

  37. Mermin, N. D.: Simple unified form for the major no-hidden-variables theorems. Phys. Rev. Lett. 65, 3373–3376 (1990)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  38. Mermin, N. D.: Hidden variables and the two theorems of John Bell. Rev. Mod. Phys. 65, 803–815 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  39. Araújo, M., Quintino, M.T., Budroni, C., Cunha, M.T., Cabello, A.: All non-contextuality inequalities for the n-cycle scenario. Phys. Rev. A 88, 022118 (2013)

    Article  ADS  Google Scholar 

  40. Klyachko, A.A., Can, M.A., Binicioğlu, S., Shumovsky, A. S: Simple test for hidden variables in spin-1 systems. Phys. Rev. Lett. 101, 020403 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Fundation of China (Nos. 11371012, 11401359, 11471200, 11571211, 11571213, 11601300), and the Fundamental Research Fund for the Central Universities (No. 2016CBY005).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huai-xin Cao.

Appendix

Appendix

In this section, we show the (3.3), (3.4), (3.6), (3.7), (3.9), (3.10) and (3.13). First, we prove that (3.3) and (3.4) hold, i.e. for any α∈[0,1],it holds that

$${QC}_{u}({PM^{\alpha}})=\frac{1}{6}\min \left\{{\sum}_{i=1}^{6}{T(PM^{\alpha}_{C_{i}},PM^{\beta}_{C_{i}})}:\ PM^{\beta}\in NCEM \right\}, $$
(A1)
$${QC}({PM^{\alpha}})={QC}_{u}({PM^{\alpha}}), $$
(A2)

where \(u\in \mathcal {D}(\mathcal {M})\) satisfies that \(u(C_{i})=\frac {1}{6}\) for any i=1,2,…,6.

Proof

By (2.7), we obtain that \({QC}_{u}({PM^{\alpha }})\leq \frac {1}{6}\min \left \{{\sum }_{i=1}^{6}{T(PM^{\alpha }_{C_{i}},PM^{\beta }_{C_{i}})}: \ PM^{\beta }\in NCEM \right \}.\) To show (A1), it is sufficient to show that there exists P M βN C E M such that

$${QC}_{u}({PM^{\alpha}})\geq \frac{1}{6}{\sum}_{i=1}^{6}{T(PM^{\alpha}_{C_{i}},PM^{\beta}_{C_{i}})}. $$
(A3)

By (2.7), we have that there exists \(d^{\ast }\in \mathcal {D}(\mathcal {E}(X))\) such that \({QC}_{u}({PM^{\alpha }})=\frac {1}{6}{\sum }_{i=1}^{6}{T(PM^{\alpha }_{C_{i}},d^{\ast }|{C_{i}})}.\) From Tables 4 and 5, we see that when \(h_{i}\in \mathcal {L}_{PM}\), \(h_{i}^{-1}=h_{i}\in \mathcal {L}_{PM}\). By Theorem 2 in [25, Appendix], we see that \(\mathcal {G}_{\mathcal {L}_{PM}}\) is a finite group and

$$\mathcal{I}_{\mathcal{L}_{PM}}=\{B\in CSB:h_{i}(B)=B,\forall i\}. $$
(A4)

Lemma 3 in [25, Appendix] said that

$$\mathcal{I}_{\mathcal{L}_{PM}}=\{PM^{\beta}:\beta\in[0,1]\}. $$
(A5)

Since \(\mathcal {G}_{\mathcal {L}_{PM}}\) is a finite group generated by h i (1≤i≤8), (A4) and (A5) imply that

$$\ell(PM^{\beta})=PM^{\beta},\ \forall \ell\in \mathcal{G}_{\mathcal{L}_{PM}}, \beta\in[0,1].$$

Since \(\{d^{\ast }|C_{i}\}_{i=1}^{6}\) is non-contextual and each \(\ell \in \mathcal {G}_{\mathcal {L}_{PM}}\) is non-contextuality preserving, it follows from [31, Theorem 2.2] that the convex combination

$$e:={\sum}_{\ell\in \mathcal{G}_{\mathcal{L}_{PM}}}\frac{1}{|\mathcal{G}_{\mathcal{L}_{PM}}|} \ell(\{d^{\ast}|C_{i}\}_{i=1}^{6})$$

is also non-contextual. On the other hand, we see from (3.2) that \(e\in \mathcal {I}_{\mathcal {L}_{PM}}\) and so (A5) implies that there exists β 0∈[0,1] such that \(PM^{\beta _{0}}=e\), which is non-contextual. Since every element of \(\mathcal {L}_{PM}\) is a composition of the following two types of linear maps: (i) π i -permutations of observables, and (ii) b i -negations of outputs of observables, and \(\mathcal {G}_{\mathcal {L}_{PM}}\) is a finite group generated by \(\mathcal {L}_{PM}\), we obtain that

$${QC}_{u}({PM^{\alpha}})\,=\,\frac{1}{6}{\sum}_{i=1}^{6}{T(PM^{\alpha}_{C_{i}},d^{\ast}|C_{i})}\,=\,\frac{1}{6}{\sum}_{i=1}^{6} T\left( [\ell(PM^{\alpha})]_{C_{i}},[\ell(\{d^{\ast}|C_{i}\}_{i=1}^{6})]_{C_{i}}\right), \ \forall \ell\!\in\! \mathcal{G}_{\mathcal{L}_{PM}}. $$

Combining the fact that (P M α) = P M α, we compute that

$$\begin{array}{@{}rcl@{}} {QC}_{u}({PM^{\alpha}}) &=&\frac{1}{6}{\sum}_{i=1}^{6} T\left( [\ell(PM^{\alpha})]_{C_{i}},[\ell(\{d^{\ast}|C_{i}\}_{i=1}^{6})]_{C_{i}}\right)\\ &=&\frac{1}{6}{\sum}_{i=1}^{6} T\left( PM^{\alpha}_{C_{i}},[\ell(\{d^{\ast}|C_{i}\}_{i=1}^{6})]_{C_{i}}\right)\\ &=&\frac{1}{6}{\sum}_{\ell\in \mathcal{G}_{\mathcal{L}_{PM}}}\frac{1}{|\mathcal{G}_{\mathcal{L}_{PM}}|}{\sum}_{i=1}^{6} T\left( PM^{\alpha}_{C_{i}},[\ell(\{d^{\ast}|C_{i}\}_{i=1}^{6})]_{C_{i}}\right)\\ &=&\frac{1}{6}{\sum}_{i=1}^{6}{\sum}_{\ell\in \mathcal{G}_{\mathcal{L}_{PM}}}\frac{1}{|\mathcal{G}_{\mathcal{L}_{PM}}|} T\left( PM^{\alpha}_{C_{i}},[\ell(\{d^{\ast}|C_{i}\}_{i=1}^{6})]_{C_{i}}\right)\\ &\geq&\frac{1}{6}{\sum}_{i=1}^{6} T\left( PM^{\alpha}_{C_{i}}, \left[{\sum}_{\ell\in \mathcal{G}_{\mathcal{L}_{PM}}}\frac{1}{|\mathcal{G}_{\mathcal{L}_{PM}}|} \ell(\{d^{\ast}|C_{i}\}_{i=1}^{6})\right]_{C_{i}}\right)\\ &=&\frac{1}{6}{\sum}_{i=1}^{6} T\left( PM^{\alpha}_{C_{i}},e_{C_{i}}\right)\\ &=&\frac{1}{6}{\sum}_{i=1}^{6}T\left( PM^{\alpha}_{C_{i}},PM^{\beta_{0}}_{C_{i}})\right), \end{array} $$

where the inequality holds because of the convexity of trace-distance, and so inequality (3) holds. Thus, (A1) holds. Since \( T({PM}^{\alpha }_{C_{i}},{PM}^{\beta }_{C_{i}})=\frac { 1}{2}\left (\frac {4|\alpha -\beta |}{4}+\frac {4|1-\alpha -(1-\beta )|}{4}\right )=|\alpha -\beta | \) for any α,β∈[0,1] and \(C_{i}\in \mathcal {M}\), we obtain by (A1) that

$${QC}_{u}({PM}^{\alpha})=\min \left\{|\alpha-\beta|:\ PM^{\beta}\in NCEM \right\}. $$

Hence, there exists \(\widetilde {\beta }\in [0,1]\) such that \(PM^{\widetilde {\beta }}\in NCEM\) and \({QC}_{u}({PM}^{\alpha })=\left |\alpha -\widetilde {\beta }\right |.\) By (2.7), we obtain that

$${QC}_{q}({PM}^{\alpha})\!\leq\! {\sum}_{i=1}^{6}q(C_{i})T(PM^{\alpha}_{C_{i}},PM^{\beta}_{C_{i}})\,=\, {\sum}_{i=1}^{6}q(C_{i})\left|\alpha-\widetilde{\beta}\right|=\left|\alpha-\widetilde{\beta}\right|={QC}_{u}({PM}^{\alpha}) $$

for any \(q\in \mathcal {D}(\mathcal {M}).\) Now, (2.8) yields that (A2) holds. □

By similarly discussing, we can obtain that (3.6), (3.7), (3.9), (3.10) hold. Next, we shall prove that (3.13) holds, i.e.

$${QC}({K})={QC}_{u}({K})=\min_{d}\ T(K_{C_{1}},d|C_{1}),$$

where \(u(C_{i})=\frac {1}{5}\) for any i=1,2,…,5 and the min was taken over all \(d\in \mathcal {D}(\mathcal {E}(X))\) such that d is a convex combination of 4 distributions d 1,d 2,d 3 and d 4 with

$$\begin{array}{@{}rcl@{}} d^{1}|C_{i}(00)&=&1,\ d^{2}|C_{i}(11)=1,\ d^{3}|C_{i}(00)=\frac{1}{5},\ d^{3}|C_{i}(01)=d^{3}|C_{i}(1 0)=\frac{2}{5}, \\d^{4}|C_{i}(11)&=&\frac{1}{5},\ d^{4}|C_{i}(01)=d^{4}|C_{i}(1 0)=\frac{2}{5} \end{array} $$

for all i.

Proof

By (2.7), we obtain that

$$\begin{array}{@{}rcl@{}} {QC}_{u}(K)&\leq& \frac{1}{5}\min \left\{{\sum}_{i=1}^{5}{T(K_{C_{i}},d|{C_{i}})} :d=xd^{1}+yd^{2}+zd^{3}\right.\\ &&\left.+\eta d^{4},x,y,z,\eta\in[0,1], x+y+z+\eta=1 \right\}. \end{array} $$

To show the second equality in (3.13), it suffices to show that there exist x 0,y 0,z 0,η 0∈[0,1] such that x 0 + y 0 + z 0 + η 0=1 and

$${QC}_{u}(K)\geq \frac{1}{5}{\sum}_{i=1}^{5}{T(K_{C_{i}},d_{0}|{C_{i}})}, $$
(A6)

with d 0 = x 0 d 1 + y 0 d 2 + z 0 d 3 + η 0 d 4. By (2.7), we obtain that there exists \(d^{\ast }\in \mathcal {D}(\mathcal {E}(X))\) such that \({QC}_{u}(K)=\frac {1}{5}{\sum }_{i=1}^{5}{T(K_{C_{i}},d^{\ast }|{C_{i}})}.\) Let \(\mathcal {L}_{K}\) be the dihedral group D 5 consisting of d=10 permutations [25, Appendix E, Section 4]. Then group \(\mathcal {G}_{\mathcal {L}_{K}}=D_{5}\). Section 4 in [25, Appendix E] said that

$$\begin{array}{@{}rcl@{}} \mathcal{I}_{\mathcal{L}_{K}}\bigcap NCEM&=&\left\{\{d|C_{i}\}_{i=1}^{5}: d=xd^{1}+yd^{2}+zd^{3}\right.\\ &&\left.+\eta d^{4},x,y,z,\eta\in[0,1], x+y+z+\eta=1\right\}. \end{array} $$
(A7)

Since \(\{d^{\ast }|C_{i}\}_{i=1}^{5}\) is non-contextual and each \(\ell \in \mathcal {G}_{\mathcal {L}_{K}}\) is non-contextuality preserving, it follows from [31, Theorem 2.2] that the convex combination \({\sum }_{\ell \in \mathcal {G}_{\mathcal {L}_{K}}}\frac {1}{|\mathcal {G}_{\mathcal {L}_{K}}|} \ell (\{d^{\ast }|C_{i}\}_{i=1}^{5})\) is also non-contextual. By (3.2), we see that

$${\sum}_{\ell\in \mathcal{G}_{\mathcal{L}_{K}}}\frac{1}{|\mathcal{G}_{\mathcal{L}_{K}}|} \ell(\{d^{\ast}|C_{i}\}_{i=1}^{5})\in \mathcal{I}_{\mathcal{L}_{K}}.$$

By (A7), there exist x 0,y 0,z 0,η 0∈[0,1] with x 0 + y 0 + z 0 + η 0=1 and d 0 = x 0 d 1 + y 0 d 2 + z 0 d 3 + η 0 d 4 such that

$$\{d_{0}|C_{i}\}_{i=1}^{5}= {\sum}_{\ell\in \mathcal{G}_{\mathcal{L}_{K}}} \frac{1}{|\mathcal{G}_{\mathcal{L}_{K}}|}\ell(\{d^{\ast}|C_{i}\}_{i=1}^{5})\in NCEM.$$

Since \(\mathcal {L}_{K}\) is a set of permutations of observables, and \(\mathcal {G}_{\mathcal {L}_{K}}\) is a finite group generated by \(\mathcal {L}_{K}\), we obtain that

$${\sum}_{i=1}^{5}{T(K_{C_{i}},d^{\ast}|C_{i})}={\sum}_{i=1}^{5} T\left( [\ell(K)]_{C_{i}},[\ell(\{d^{\ast}|C_{i}\}_{i=1}^{5})]_{C_{i}}\right),\ \forall \ell\in \mathcal{G}_{\mathcal{L}_{K}}.$$

Based on the fact that (K) = K for any \(\ell \in \mathcal {G}_{\mathcal {L}_{K}},\) we compute that

$$\begin{array}{@{}rcl@{}} {QC}_{u}(K)&=&\frac{1}{5}{\sum}_{i=1}^{5}{T(K_{C_{i}},d^{\ast}|C_{i})}\\ &=&\frac{1}{5}{\sum}_{i=1}^{5} T\left( [\ell(K)]_{C_{i}},[\ell(\{d^{\ast}|C_{i}\}_{i=1}^{5})]_{C_{i}}\right)\\ &=&\frac{1}{5}{\sum}_{i=1}^{5}{\sum}_{\ell\in \mathcal{G}_{\mathcal{L}_{K}}}\frac{1}{|\mathcal{G}_{\mathcal{L}_{K}}|} T\left( K_{C_{i}},[\ell(\{d^{\ast}|C_{i}\}_{i=1}^{5})]_{C_{i}}\right)\\ &\geq&\frac{1}{5}{\sum}_{i=1}^{5} T\left( K_{C_{i}}, \left[{\sum}_{\ell\in \mathcal{G}_{\mathcal{L}_{K}}} \frac{1}{|\mathcal{G}_{\mathcal{L}_{K}}|}\ell(\{d^{\ast}|C_{i}\}_{i=1}^{5})\right]_{C_{i}}\right)\\ &=&\frac{1}{5}{\sum}_{i=1}^{5}T\left( K_{C_{i}},d_{0}|{C_{i}})\right) \end{array} $$

where the inequality holds because of the convexity of trace-distance, and so inequality (A6) holds.

For any d = x d 1 + y d 2 + z d 3 + η d 4 with x,y,z,η≥0 and x + y + z + η=1, we obtain that

$$\begin{array}{@{}rcl@{}} T(K_{C_{i}},d|C_{i}) &=&\frac{1}{2}\cdot\left( \left|1-\frac{2}{\sqrt{5}}-x-\frac{1}{5}z\right|+ 2\left|\frac{1}{\sqrt{5}}-\frac{2}{5}(z+\eta)\right|+y+\frac{1}{5}\eta\right). \end{array} $$

Hence,

$$\begin{array}{@{}rcl@{}} {QC}_{u}(K)&=&\frac{1}{2}\min \left\{\left|1-\frac{2}{\sqrt{5}}-x-\frac{1}{5}z\right|+ 2\left|\frac{1}{\sqrt{5}}-\frac{2}{5}(z+\eta)\right|\right.\\ &&\left.+y+\frac{1}{5}\eta:\ x,y,z,\eta\in[0,1], x+y+z+\eta=1 \right\}. \end{array} $$

Thus, there exist x 0,y 0,z 0,η 0∈[0,1] with x 0 + y 0 + z 0 + η 0=1 such that d 0 = x 0 d 1 + y 0 d 2 + z 0 d 3 + η 0 d 4 and

$${QC}_{u}(K)=\frac{1}{2}\cdot\left( \left|1-\frac{2}{\sqrt{5}}-x_{0}-\frac{1}{5}z_{0}\right|+ 2\left|\frac{1}{\sqrt{5}}-\frac{2}{5}(z_{0}+\eta_{0})\right|+y_{0}+\frac{1}{5}\eta_{0}\right).$$

By (2.7), we obtain that

$$\begin{array}{@{}rcl@{}} {QC}_{q}(K) &\leq& {\sum}_{i=1}^{5}q(C_{i})T(K_{C_{i}},d_{0}|{C_{i}})\\ &=&{\sum}_{i=1}^{5}q(C_{i})\frac{1}{2}\cdot\left( \left|1-\frac{2}{\sqrt{5}}-x_{0}-\frac{1}{5}z_{0}\right|+ 2\left|\frac{1}{\sqrt{5}}-\frac{2}{5}(z_{0}+\eta_{0})\right|+y_{0}+\frac{1}{5}\eta_{0}\right)\\ &=&\frac{1}{2}\cdot\left( \left|1-\frac{2}{\sqrt{5}}-x_{0}-\frac{1}{5}z_{0}\right|+ 2\left|\frac{1}{\sqrt{5}}-\frac{2}{5}(z_{0}+\eta_{0})\right|+y_{0}+\frac{1}{5}\eta_{0}\right)\\ &=&{QC}_{u}(K) \end{array} $$

for any \(q\in \mathcal {D}(\mathcal {M}).\) Now, (2.8) yields that (3.13) holds. □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Meng, Hx., Cao, Hx., Wang, Wh. et al. Quantifying Contextuality of Empirical Models in Terms of Trace-Distance. Int J Theor Phys 56, 1807–1830 (2017). https://doi.org/10.1007/s10773-017-3327-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-017-3327-5

Keywords

Navigation