Skip to main content
Log in

Relaxation Process of Interacting Two-mode System Influenced by Markovian Thermal Reservoirs

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Two different models of a relaxation process are considered for a linearly interacting two-mode system under the influence of independent Markovian thermal reservoirs. One is to describe the relaxation process of bare particles and the other is to describe the one of quasi particles which are derived from bare particles by the Bogoliubov transformation. The difference is that the former does not includes the effect of the inter-mode interaction on the damping operator while the latter does. The equations of motion are solved algebraically by making use of non-equilibrium thermo field dynamics. The relaxation processes in the two models are investigated in detail. The results are applied for investigating a non-ideal beam splitter with photon loss and noise addition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Kubo, R., Toda, M., Hashitsume N.: Statistical Physics II. Springer, Berlin (1985)

    Book  MATH  Google Scholar 

  2. Breuer, H.-P., Petruccione, F.: The Theory of Open Quantum Systems. Oxford University Press, Oxford (2006)

    MATH  Google Scholar 

  3. Abragam, A.: Principles of Nuclear Magnetism. Oxford University Press, Oxford (1961)

    Google Scholar 

  4. Slichter, C.P.: Principles of Nuclear Resonance. Springer-Verlag, Berlin (1990)

    Book  Google Scholar 

  5. Van Kampen, N.G.: Stochastic Processes in Physics and Chemistry. Elsevier, Amsterdam (1983)

    MATH  Google Scholar 

  6. Feynmann, R.P., Vernon, F.F.: The theory of a general quantum system Interacting with a linear dissipative system. Ann. Phys. (NY) 24, 118–173 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  7. Umezawa, H., Matsumoto, H., Tachiki, M.: Thermo Field Dynamics and Condensed States. North-Holland, Amsterdam (1982)

    Google Scholar 

  8. Umezawa, H.: Advanced Field Theory: Micro, Macro, and Thermal Physics. Institute of Physics, New York (1993)

    Google Scholar 

  9. Leplae, L., Umezawa, H., Mancini, F.: Derivation and application of the boson method in superconductivity. Phys. Rep. 10, 151–272 (1974)

    Article  ADS  Google Scholar 

  10. Takahashi, Y., Umezawa, H.: Thermo field dynamics. Collective Phenomena 2, 55–80 (1975). [reproduced in Int. J. Mod. Phys. B 10, 1755–1806 (1996)]

    MathSciNet  MATH  Google Scholar 

  11. Arimitsu, T., Umezawa, H.: A general formulation of nonequilibrium thermo field dynamics. Prog. Theor. Phys. 74, 429–432 (1985)

    Article  ADS  MATH  Google Scholar 

  12. Arimitsu, T., Umezawa, H.: Non-equilibrium thermo field dynamics. Prog. Theor. Phys. 77, 32–52 (1987)

    Article  ADS  Google Scholar 

  13. Arimitsu, T., Umezawa, H.: General structure of non-equilibrium thermo field dynamics. Prog. Theor. Phys. 77, 53–67 (1987)

    Article  ADS  Google Scholar 

  14. Chaturvedi, S., Srinivasan, V.: Solution of the master equation for an attenuated or amplified nonlinear oscillator with an arbitrary initial condition. J. Mod. Opt. 38, 777–783 (1991)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  15. Chaturvedi, S., Srinivasan, V.: Class of exactly solvable master equations describing coupled nonlinear oscillators. Phys. Rev. A 43, 4054–4057 (1991)

    Article  ADS  Google Scholar 

  16. Ban, M.: SU(l,1) Lie algebraic approach to linear dissipative processes in quantum optics. J. Math. Phys. 33, 3213–3228 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  17. Ban, M.: Lie-algebra method in quantum optics: the Liouville space formulation. Phys. Rev. A 47, 5093–5119 (1993)

    Article  ADS  Google Scholar 

  18. Chaturvedi, S., Srinivasan, V., Agarwal, G.S.: Quantum phase space distributions in thermofield dynamics. J. Phys. A 32, 1909–1918 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  19. Fan, H., Fan, Y.: New approach for solving master equations of density operators by virtue of the thermal entangled states. J. Phys. A 35, 6873–6882 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Fan, H., Hu, L.: Operator-sum representation of density operators as solutions to master equations obtained via the entangled state approach. Mod. Phys. Lett. B 22, 2435–2468 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  21. Fan, H., Fan, Y.: New representation of thermal states in thermal field dynamics. Phys. Lett. A 246, 242–246 (1998)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  22. Ban, M.: Optical Lindblad operator in non-equilibrium thermo field dynamics. J. Mod. Opt. 56, 577–592 (2009)

    Article  ADS  MATH  Google Scholar 

  23. Shiv Chaitanya, K.V.S.: Algebraic solution of master equations in quantum optics. J. Mod. Opt. 58, 77–81 (2011)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Barnett, S.M., Knight, P.L.: Thermofield analysis of squeezing and statistical mixtures in quantum optics. J. Opt. Soc. Am. B 2, 467–479 (1985)

    Article  ADS  Google Scholar 

  25. Ban, M., Arimitsu, T.: Thermo field dynamical approach to optical dephasing. Physica 149A, 26–125 (1987)

    Google Scholar 

  26. Tominaga, T., Ban, M., Arimitsu, T., Pradko, J., Umezawa, H.: Spin relaxation in terms of thermo field dynamics. Physica 149A, 26–48 (1988)

    Article  ADS  Google Scholar 

  27. Suzuki, M.: Thermo field dynamics of quantum spin systems. J. Stat. Phys. 42, 1047–1070 (1986)

    Article  ADS  MathSciNet  Google Scholar 

  28. Suzuki, M.: Density matrix formalism, double-space and thermo field dynamics in non-equilibrium dissipative systems. Int. J. Mod. Phys. B 5, 1821–1842 (1991)

    Article  ADS  Google Scholar 

  29. Nakamura, Y., Yamanaka, Y.: From superoperator formalism to nonequilibrium thermo field dynamics. Ann. Phys. 331, 51–69 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Yoshida, K., Hayashi, T., Kitajima, S, Arimitsu, T.: Dissipative squeezed vacuum in non-equilibrium thermo field dynamics. Physica A 389, 705–722 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  31. Kitajima, S., Arimitsu, T., Obinata, M., Yoshida, Y.: Application of non-equilibrium thermo field dynamics to quantum teleportation under the environment. Physica A 404, 242–270 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  32. Matsuo, Y., Abe, S.: Completely-positive quantum operations generating thermostatistical states: a comparative study. Physica A 409, 130–137 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  33. Hashizumea, Y., Suzuki, M., Okamuraa, S.: A new perspective to formulate a dissipative thermo field dynamics. Physica A 419, 506–512 (2015)

    Article  ADS  Google Scholar 

  34. Wan, Z.L., Fan, H.Y.: Expectation value theorem for thermo vacuum states of optical chaotic field and negative-binomial field. Int. J. Theor. Phys. 55, 3164–3172 (2016)

    Article  MathSciNet  Google Scholar 

  35. Arimitsu, T., Takahashi, Y., Shibata, F.: Rigorous treatment of the damping theory for coupled systems in contact with reservoirs. Physica 100A, 507–539 (1980)

    Article  ADS  Google Scholar 

  36. Arimitsu, T.: Reduction of a boson subsystem up to the lowest order. J. Phys. Soc. Jpn. 51, 379–389 (1982)

    Article  ADS  Google Scholar 

  37. Arimitsu, T., Shibata, F.: Theory of exchange dephasing I: General formulation. J. Phys. Soc. Jpn 51, 1070–1077 (1982)

    Article  ADS  Google Scholar 

  38. Ban, M., Arimitsu, T.: A solvable model of microscopic frequency modulation II. Rigorous treatment of damping operator. Physica 129A, 455–468 (1985)

    Article  ADS  Google Scholar 

  39. Quiroga, L., Rodríguez, F., Ramírez, M.E., París, R.: Nonequilibrium thermal entanglement. Phys. Rev. A 75, 032308 (2007)

    Article  ADS  Google Scholar 

  40. Sinaysky, I., Petruccione, F., Burgarth, D.: Dynamics of nonequilibrium thermal entanglement. Phys. Rev. A 78, 062301 (2008)

    Article  ADS  Google Scholar 

  41. Scala, M., Migliore, R., Messina, A.: Dissipation and entanglement dynamics for two interacting qubits coupled to independent reservoirs. J. Phys.A 41, 435304 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Dubi, Y., Di Ventra, M.: Relaxation times in an open interacting two-qubit system. Phys. Rev. A 79, 012328 (2009)

    Article  ADS  Google Scholar 

  43. Ban, M.: Dephasing of two interacting qubits under the influence of thermal reservoirs. Phys. Rev. A 80, 032114 (2009)

    Article  ADS  Google Scholar 

  44. Ban, M.: A relaxation process including interaction effects of a two-qubit system. J. Phys. A 43, 035303 (2010)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  45. Walls, D. F., Milburn, G. J.: Quantum Optics. Springer, Berlin (1994)

    Book  MATH  Google Scholar 

  46. Leonhardt, U.: Measuring the Quantum State of Light. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  47. Barnett, S. M., Jeffers, J., Gatti, A., Loudon, R.: Quantum optics of lossy beam splitters. Phys. Rev. A 57, 2134–2145 (1998)

    Article  ADS  Google Scholar 

  48. Jeffers, J.: Interference and the lossless lossy beam splitter. J. Mod. Opt. 47, 1819–1824 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  49. Huttner, B., Barnett, S.M.: Quantization of electromagnetic field in dielectrics. Phys. Rev. A 46, 4306–4322 (1992)

    Article  ADS  Google Scholar 

  50. Uppu, R., Wolterink, T.A.W., Tentrup, T.B.H., Pinkse, P.W.H.: Quantum optics of lossy asymmetric beam splitters. Opt. Express 24, 16440–16449 (2016)

    Article  ADS  Google Scholar 

  51. Adesso, G., Illuminati, F.: Gaussian measures of entanglement versus negativities: Ordering of two-mode Gaussian states. Phys. Rev. A 72, 032334 (2005)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masashi Ban.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ban, M. Relaxation Process of Interacting Two-mode System Influenced by Markovian Thermal Reservoirs. Int J Theor Phys 56, 530–545 (2017). https://doi.org/10.1007/s10773-016-3195-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-016-3195-4

Keywords

Navigation