Skip to main content
Log in

Non-Markovian dynamics of quantum coherence of two-level system driven by classical field

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

In this paper, we study the quantum coherence dynamics of two-level atom system embedded in non-Markovian reservoir in the presence of classical driving field. We analyze the influence of memory effects, classical driving, and detuning on the quantum coherence. It is found that the quantum coherence has different behaviors in resonant case and non-resonant case. In the resonant case, in stark contrast with previous results, the strength of classical driving plays a negative effect on quantum coherence, while detuning parameter has the opposite effect. However, in non-resonant case through a long time, classical driving and detuning parameter have a different influence on quantum coherence compared with resonant case. Due to the memory effect of environment, in comparison with Markovian regime, quantum coherence presents vibrational variations in non-Markovian regime. In the resonant case, all quantum coherence converges to a fixed maximum value; in the non-resonant case, quantum coherence evolves to different stable values. For zero-coherence initial states, quantum coherence can be generated with evolution time. Our discussions and results should be helpful in manipulating and preserving the quantum coherence in dissipative environment with classical driving field.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Glauber, R.J.: Coherent and incoherent states of the radiation field. Phys. Rev. 131, 2766 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  2. Mandel, L., Wolf, E.: Optical Coherence and Quantum Optics. Cambridge University Press, Cambridge (1995)

    Book  Google Scholar 

  3. Asbóth, J.K., Calsamiglia, J., Ritsch, H.: Computable measure of nonclassicality for light. Phys. Rev. Lett. 94, 173602 (2005)

    Article  ADS  Google Scholar 

  4. Vogel, W., Sperling, J.: Unified quantification of nonclassicality and entanglement. Phys. Rev. A 89, 052302 (2014)

    Article  ADS  Google Scholar 

  5. Mraz, M., Sperling, J., Vogel, W., Hage, B.: Witnessing the degree of nonclassicality of light. Phys. Rev. A 90, 033812 (2014)

    Article  ADS  Google Scholar 

  6. Åberg, J.: Catalytic coherence. Phys. Rev. Lett. 113, 150402 (2014)

    Article  Google Scholar 

  7. Narasimhachar, V., Gour, G.: Low-temperature thermodynamics with quantum coherence. Nat. Commun. 6, 7689 (2015)

    Article  ADS  Google Scholar 

  8. Lostaglio, M., Jennings, D., Rudolph, T.: Description of quantum coherence in thermodynamic processes requires constraints beyond free energy. Nat. Commun. 6, 6383 (2015)

    Article  ADS  Google Scholar 

  9. Nielsen, M., Chuang, I.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  10. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113, 140401 (2014)

    Article  ADS  Google Scholar 

  11. Huang, Z.M., Situ, H.Z.: Dynamics of quantum correlation and coherence for two atoms coupled with a bath of fluctuating massless scalar feld. Ann. Phys. 377, 484 (2017)

    Article  ADS  MATH  Google Scholar 

  12. Situ, H.Z., Hu, X.Y.: Dynamics of relative entropy of coherence under Markovian channels. Quantum Inf. Process. 15, 4649 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Huang, Z.M., Situ, H.Z.: Optimal protection of quantum coherence in noisy environment. Int. J. Theor. Phys. 56, 503 (2017)

    Article  MATH  Google Scholar 

  14. Huang, Z., Situ, H., Zhao, L.: Payoffs and coherence of a quantum two-player game under noisy environment. Eur. Phys. J. Plus 132, 152 (2017)

    Article  Google Scholar 

  15. Huang, Z., Situ, H., Zhang, C.: Quantum coherence and correlation in spin models with Dzyaloshinskii-Moriya interaction. Int. J. Theor. Phys. 56, 2178 (2017)

  16. Huang, Z., Rong, Z., Zou, X., Situ, H., Zhao, L.: Protecting qutrit quantum coherence. Int. J. Theor. Phys. 56, 2540 (2017)

  17. Deveaud-Plédran, B., Quattropani, A., Schwendimann, P. (Eds.): Quantum coherence in solid state systems. In: Proceedings of the International School of Physics Enrico Fermi, vol. 171. IOS Press, Amsterdam (2009). ISBN: 978-1-60750-039-1

  18. Li, C.-M., Lambert, N., Chen, Y.-N., Chen, G.-Y., Nori, F.: Witnessing quantum coherence: from solid-state to biological systems. Sci. Rep. 2, 885 (2012)

    Article  Google Scholar 

  19. Engel, G.S., Calhoun, T.R., Read, E.L., Ahn, T.-K., Manc̆al, T., Cheng, Y.-C., Blakenship, R.E., Fleming, G.R.: Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446, 782 (2007)

    Article  ADS  Google Scholar 

  20. Collini, E., Wong, C.Y., Wilk, K.E., Curmi, P.M.G., Brumer, P., Scholes, G.D.: Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature. Nature 463, 644 (2010)

    Article  ADS  Google Scholar 

  21. Lambert, N., Chen, Y.-N., Cheng, Y.-C., Li, C.-M., Chen, G.-Y., Nori, F.: Quantum biology. Nat. Phys. 9, 10 (2013)

    Article  Google Scholar 

  22. Chin, A.W., Prior, J., Rosenbach, R., Caycedo-Soler, F., Huelga, S.F., Plenio, M.B.: The role of non-equilibrium vibrational structures in electronic coherence and recoherence in pigment–protein complexes. Nat. Phys. 9, 113 (2013)

    Article  Google Scholar 

  23. Cai, J., Plenio, M.B.: Chemical compass model for avian magnetoreception as a quantum coherent device. Phys. Rev. Lett. 111, 230503 (2013)

    Article  ADS  Google Scholar 

  24. Levi, F., Mintert, F.: A quantitative theory of coherent delocalization. New J. Phys. 16, 033007 (2014)

    Article  ADS  Google Scholar 

  25. Girolami, D.: Observable measure of quantum coherence in finite dimensional systems. Phys. Rev. Lett. 113, 170401 (2014)

    Article  ADS  Google Scholar 

  26. Smyth, C., Scholes, G.D.: Method of developing analytical multipartite delocalization measures for mixed W-like states. Phys. Rev. A 90, 032312 (2014)

    Article  ADS  Google Scholar 

  27. Pires, D.P., Celeri, L.C., Soares-Pinto, D.O.: Geometric lower bound for a quantum coherence measure. Phys. Rev. A 91, 042330 (2015)

    Article  ADS  Google Scholar 

  28. Streltsov, A., Singh, U., Dhar, H.S., Bera, M.N., Adesso, G.: Measuring quantum coherence with entanglement. Phys. Rev. Lett. 115, 020403 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  29. Rana, S., Parashar, P., Lewenstein, M.: Trace-distance measure of coherence. Phys. Rev. A 93, 012110 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  30. Yao, Y., Xiao, X., Ge, L., Sun, C.P.: Quantum coherence in multipartite systems. Phys. Rev. A 92, 022112 (2015)

    Article  ADS  Google Scholar 

  31. Chitambar, E., Hsieh M.-H.: Relating the resource theories of entanglement and quantum coherence (2015). arXiv:1509.07458

  32. Xi, Z., Li, Y., Fan, H.: Quantum coherence and correlations in quantum system. Sci. Rep. 5, 10922 (2015)

    Article  ADS  Google Scholar 

  33. Hu, X., Fan, H.: Coherence extraction from measurement-induced disturbance (2015). arXiv:1508.01978

  34. Ma, J.J., Yadin, B., Girolami, D., Vedral, V., Gu, M.: Converting coherence to quantum correlations. Phys. Rev. Lett. 116, 160407 (2016)

    Article  ADS  Google Scholar 

  35. Wolf, M.M., Eisert, J., Cubitt, T.S., Cirac, J.I.: Assessing non-Markovian quantum dynamics. Phys. Rev. Lett. 101, 150402 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  36. Breuer, H.P., Laine, E.M., Piilo, J., Vacchini, B.: Non-Markovian dynamics in open quantum systems. Rev. Mod. Phys. 88, 021002 (2016)

    Article  ADS  Google Scholar 

  37. Buscemi, F., Datta, N.: Equivalence between divisibility and monotonic decrease of information in classical and quantum stochastic processes. Phys. Rev. A 93, 012101 (2016)

    Article  ADS  MathSciNet  Google Scholar 

  38. Buscemi, F.: On complete positivity, Markovianity, and the quantum data-processing inequality, in the presence of initial system-environment correlations. Phys. Rev. Lett. 113, 140502 (2014)

    Article  ADS  Google Scholar 

  39. Rivas, Á., Huelga, S.F., Plenio, M.B.: Entanglement and non-Markovianity of quantum evolutions. Phys. Rev. Lett. 105, 050403 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  40. Breuer, H.-P., Laine, E.-M., Piilo, J.: Measure for the degree of non-Markovian behavior of quantum processes in open systems. Phys. Rev. Lett. 103, 210401 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  41. Haseli, S., Salimi, S., Khorashad, A.S.: A measure of non-Markovianity for unital quantum dynamical maps. Quantum Inf. Process. 14, 3581 (2015)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  42. Luo, S., Fu, S., Song, H.: Quantifying non-Markovianity via correlations. Phys. Rev. A 86, 044101 (2012)

    Article  ADS  Google Scholar 

  43. Lorenzo, S., Plastina, F., Paternostro, M.: Geometrical characterization of non-Markovianity. Phys. Rev. A 88, 020102(R) (2013)

    Article  ADS  Google Scholar 

  44. Bylicka, B., Chruściński, D., Maniscalco, S.: Non-Markovianity and reservoir memory of quantum channels: a quantum information theory perspective. Sci. Rep. 4, 5720 (2014)

    Article  Google Scholar 

  45. Fanchini, F.F., et al.: Non-Markovianity through accessible information. Phys. Rev. Lett. 112, 210402 (2014)

    Article  ADS  Google Scholar 

  46. Haseli, S., et al.: Non-Markovianity through flow of information between a system and an environment. Phys. Rev. A 90, 052118 (2014)

    Article  ADS  Google Scholar 

  47. González-Gutiérrez, C., Román-Ancheyta, R., Espitia, D., Lo, R.: Franco: relations between entanglement and purity in non-Markovian dynamics. Int. J. Quantum. Inform. 14, 1650031 (2016)

    Article  ADS  MATH  Google Scholar 

  48. Bellomo, B., Lo Franco, R., Compagno, G.: Non-Markovian effects on the dynamics of entanglement. Phys. Rev. Lett. 99, 160502 (2007)

    Article  ADS  Google Scholar 

  49. Bellomo, B., Lo Franco, R., Compagno, G.: Entanglement dynamics of two independent qubits in environments with and without memory. Phys. Rev. A 77, 032342 (2008)

    Article  ADS  Google Scholar 

  50. Dijkstra, A.G., Tanimura, Y.: Non-Markovian entanglement dynamics in the presence of system-bath coherence. Phys. Rev. Lett. 104, 250401 (2010)

    Article  ADS  Google Scholar 

  51. Wang, B., Xu, Z.Y., Chen, Z.Q., Feng, M.: Non-Markovian effect on the quantum discord. Phys. Rev. A 81, 014101 (2010)

    Article  ADS  Google Scholar 

  52. He, Z., Yao, C., Wang, Q., Zou, J.: Measuring non-Markovianity based on local quantum uncertainty. Phys. Rev. A 90, 042101 (2014)

    Article  ADS  Google Scholar 

  53. Dhar, H.S., Bera, M.N., Adesso, G.: Characterizing non-Markovianity via quantum interferometric power. Phys. Rev. A 91, 032115 (2015)

    Article  ADS  Google Scholar 

  54. Lu, X.M., Wang, X., Sun, C.P.: Quantum Fisher information flow and non-Markovian processes of open systems. Phys. Rev. A 82, 042103 (2010)

    Article  ADS  Google Scholar 

  55. Berrada, K.: Non-Markovian effect on the precision of parameter estimation. Phys. Rev. A 88, 035806 (2013)

    Article  ADS  Google Scholar 

  56. Xiao, X., Fang, M.F., Li, Y.L.: Non-Markovian dynamics of two qubits driven by classical fields: population trapping and entanglement preservation. J. Phys. B: At. Mol. Opt. Phys. 43, 185505 (2010)

    Article  ADS  Google Scholar 

  57. Li, Y.L., Xiao, X., Yao, Y.: Classical-driving-enhanced parameter-estimation precision of a non-Markovian dissipative two-state system. Phys. Rev. A 91, 052105 (2015)

    Article  ADS  Google Scholar 

  58. Haikka, P., Maniscalco, S.: Non-Markovian dynamics of a damped driven two-state system. Phys. Rev. A 81, 052103 (2010)

    Article  ADS  Google Scholar 

  59. Dalton, B.J., Barnett, S.M., Garraway, B.M.: Theory of pseudomodes in quantum optical processes. Phys. Rev. A 64, 053813 (2001)

    Article  ADS  MATH  Google Scholar 

  60. Luo, S., Fu, S.S.: Measurement-induced nonlocality. Phys. Rev. Lett. 106, 120401 (2011)

    Article  ADS  MATH  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant No. 61502179), the Natural Science Foundation of Guangdong Province of China (Grant No. 2014A030310265), the Science Foundation for Young Teachers of Wuyi University (Grant No. 2015zk01), and the Doctoral Research Foundation of Wuyi University (Grant No. 2017BS07).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhiming Huang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, Z., Situ, H. Non-Markovian dynamics of quantum coherence of two-level system driven by classical field. Quantum Inf Process 16, 222 (2017). https://doi.org/10.1007/s11128-017-1673-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-017-1673-0

Keywords

Navigation