Skip to main content
Log in

Studying the Fourth Generation Quark Contributions to the Double Charm Decays \(B_{(s)} \to D_{(s)}^{(*)} D_{s}^{(*)}\)

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Almost all branching ratios and longitudinal polarization fractions of the double charm decays \(B_{(s)} \to D_{(s)}^{(*)} D_{s}^{(*)}\) have been measured, and the experimental central value of \(f_{L}({B^{0}_{s}}\to D^{*+}_{s}D^{*-}_{s})\) is quite small comparing to its Standard Model prediction. We study the fourth generation quark contributions to the double charm decays \(B_{(s)} \to D_{(s)}^{(*)} D_{s}^{(*)}\). We find that the loop diagrams involving the fourth generation quark t′ have great effects on all branching ratios and CP asymmetries, which are very sensitive to the fourth generation parameter \(\lambda ^{s}_{t^{\prime }}\) and \(\phi _{t^{\prime }}\). Nevertheless, the experimental measurements of all branching ratios can not give effective constraints on relevant new physics parameters. In addition, they have no obvious effect on the relevant polarization fractions. These results could be used to search for the fourth heavy quark t′ via its indirect manifestations in loop diagrams.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Aaij, R., et al.: LHCb Collaboration. Phys. Rev. D 87, 092007 (2013). arXiv:1302.5854[hep-ex]

    Article  ADS  Google Scholar 

  2. Aaltonen, T., et al.: CDF Collaboration. Phys. Rev. Lett. 108, 201801 (2012). arXiv:1204.0536[hep-ex]

    Article  ADS  Google Scholar 

  3. Esen, S, et al.: Belle Collaboration. Phys. Rev. D 87, 031101 (2013). arXiv:1208.0323

    Article  ADS  Google Scholar 

  4. Aubert, B., et al.: BABAR Collaboration. Phys. Rev. D 74, 031103 (2006). arXiv:hep-ex/0605036

    Article  ADS  Google Scholar 

  5. Aubert, B., et al.: BABAR Collaboration. Phys. Rev. D 71, 091104 (2005). arXiv:hep-ex/0502041

    Article  ADS  Google Scholar 

  6. Aubert, B, et al.: BABAR Collaboration. Phys. Rev. D 67, 092003 (2003). arXiv:hep-ex/0302015

    Article  ADS  Google Scholar 

  7. Ahmed, S., et al.: CLEO Collaboration. Phys. Rev. D 62, 112003 (2000). arXiv:hep-ex/0008015

    Article  ADS  Google Scholar 

  8. Gibaut, D., et al.: CLEO Collaboration. Phys. Rev. D 53, 4734 (1996)

    Article  ADS  Google Scholar 

  9. Albrecht, H., et al.: ARGUS Collaboration. Z. Phys. C 54, 1 (1992)

    Article  ADS  Google Scholar 

  10. Bortoletto, D., et al.: Phys. Rev. Lett. 64, 2117 (1990)

    Article  ADS  Google Scholar 

  11. Hou, W.S., Soni, A., Steger, H.: Phys. Lett. B 192, 441 (1987)

    Article  ADS  Google Scholar 

  12. Hamzaoui, C., Sanda, A.I., Soni, A.: Nucl. Phys. Proc. Suppl. 13, 494 (1990)

    Article  ADS  Google Scholar 

  13. Eilam, G., Hewett, J.L., Rizzo, T.G.: Phys. Rev. D 34, 2773 (1986)

    Article  ADS  Google Scholar 

  14. Vysotsky, M.I.: arXiv:1312.0474[hep-ph]

  15. Geller, M., Bar-Shalom, S., Eilam, G., Soni, A.: Phys. Rev. D 86, 115008 (2012). arXiv:1209.4081[hep-ph]

    Article  ADS  Google Scholar 

  16. Burdman, G., Haluch, C.E.F.: JHEP 1112, 038 (2011). arXiv:1109.3914[hep-ph]

    Article  ADS  Google Scholar 

  17. Chen, N., He, H.J.: JHEP 1204, 062 (2012). arXiv:1202.3072[hep-ph]

    Article  ADS  Google Scholar 

  18. He, X.G., Valencia, G.: Phys. Lett. B 707, 381 (2014). arXiv:1108.0222[hep-ph]

    Article  ADS  Google Scholar 

  19. Bar-Shalom, S., Nandi, S., Soni, A.: Phys. Rev. D 84, 053009 (2011). arXiv:1105.6095[hep-ph]

    Article  ADS  Google Scholar 

  20. Banerjee, S., Frank, M., Rai, S.K.: Phys. Rev. D 89, 075005 (2014). arXiv:1312.4249[hep-ph]

    Article  ADS  Google Scholar 

  21. Jung, M., Schacht, S.: Phys. Rev. D 91, 034027 (2015). arXiv:1410.8396[hep-ph]

    Article  ADS  Google Scholar 

  22. Mohanta, R.: Phys. Rev. D 84, 014019 (2011). arXiv:1104.4739[hep-ph]

    Article  ADS  Google Scholar 

  23. Fleischer, R.: Eur. Phys. J. C 51, 849 (2007). arXiv:0705.4421[hep-ph]

    Article  ADS  Google Scholar 

  24. Li, R.H., Wang, X.X., Sanda, A.I., Lu, C.D.: Phys. Rev. D 81, 034006 (2010). arXiv:0910.1424[hep-ph]

    Article  ADS  Google Scholar 

  25. Faller, S., Fleischer, R., Mannel, T.: Phys. Rev. D 79, 014005 (2009). arXiv:0810.4248[hep-ph]

    Article  ADS  Google Scholar 

  26. Soni, A., Alok, A.K., Giri, A., Mohanta, R., Nandi, S.: Phys. Rev. D 82, 033009 (2010). arXiv:1002.0595[hep-ph]

    Article  ADS  Google Scholar 

  27. Buchalla, G., Buras, A.J., Lautenbacher, M.E.: Rev. Mod. Phys. 68, 1125 (1996). arXiv:hep-ph/9512380

    Article  ADS  Google Scholar 

  28. Wirbel, M., Stech, B., Bauer, M.: Z. Phys. C 29, 637 (1985)

    Article  ADS  Google Scholar 

  29. Bauer, M., Stech, B., Wirbel, M.: Z. Phys. C 34, 103 (1987)

    Article  ADS  Google Scholar 

  30. Kim, C.S., Wang, R.M., Yang, Y.D.: Phys. Rev. D 79, 055004 (2009). arXiv:0812.4136[hep-ph]

    Article  ADS  Google Scholar 

  31. Gronau, M.: Phys. Lett. B 233, 479 (1989)

    Article  ADS  Google Scholar 

  32. Soto, J.: Nucl. Phys. B 316, 141 (1989)

    Article  ADS  MathSciNet  Google Scholar 

  33. Ali, A., Kramer, G., Lu, C.D.: Phys. Rev. D 59, 014005 (1998). arXiv:hep-ph/9805403

    Article  ADS  Google Scholar 

  34. Palmer, W.F., Wu, Y.L.: Phys. Lett. B 350, 245 (1995). arXiv:hep-ph/9501295

    Article  ADS  Google Scholar 

  35. Olive, K.A, et al.: Particle data group. Chin. Phys. C 38, 090001 (2014)

    Article  ADS  Google Scholar 

  36. Lucha, W., Melikhov, D., Simula, S.: Phys. Lett. B 701, 82 (2011). arXiv:1101.5986[hep-ph]

    Article  ADS  Google Scholar 

  37. Lucha, W., Melikhov, D., Simula, S.: Phys. Lett. B 735, 12 (2014). arXiv:1404.0293[hep-ph]

    Article  ADS  Google Scholar 

  38. Li, Y., Lu, C.D., Xiao, Z.J.: J. Phys. G 31, 273 (2005). arXiv:hep-ph/0308243

    Article  ADS  Google Scholar 

  39. Caprini, I., Lellouch, L., Neubert, M.: Nucl. Phys. B 530, 153 (1998). arXiv:hep-ph/9712417

    Article  ADS  Google Scholar 

  40. Falk, A.F., Neubert, M.: Phys. Rev. D 47, 2965 (1993). arXiv:hep-ph/9209268

    Article  ADS  Google Scholar 

  41. Neubert, M., Rieckert, V.: Nucl. Phys. B 382, 97 (1992)

    Article  ADS  Google Scholar 

  42. Neubert, M.: Phys. Rev. D 46, 2212 (1992)

    Article  ADS  Google Scholar 

  43. Cheng, H.Y., Chua, C.K., Hwang, C.W.: Phys. Rev. D 69, 074025 (2004). arXiv:hep-ph/0310359

    Article  ADS  Google Scholar 

  44. de Divitiis, G.M, Petronzio, R., Tantalo, N.: JHEP 0710, 062 (2007). arXiv:0707.0587[hep-lat]

    Article  ADS  Google Scholar 

  45. Amhis, Y., et al.: Heavy Flavor Averaging Group Collaboration, arXiv:1207.1158[hep-ex]

  46. Fajfer, S., Kamenik, J.F., Nisandzic, I.: Phys. Rev. D 85, 094025 (2012). arXiv:1203.2654[hep-ph]

    Article  ADS  Google Scholar 

  47. Falk, A.F., Neubert, M.: Phys. Rev. D 47, 2982 (1993). arXiv:hep-ph/9209269

    Article  ADS  Google Scholar 

Download references

Acknowledgments

The work of Yuan-Guo Xu was supported by Joint Funds of the National Natural Science Foundation of China (No. U1204113). The work of Ru-Min Wang was supported by Program for the New Century Excellent Talents in University (No. NCET-12-0698).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ru-Min Wang.

Appendices

Appendix A: FF1

The form factors calculated in the framework of Heavy Quark Effective Theory [39, 40].

The form factors of BD transition are [40]

$$\begin{array}{@{}rcl@{}} F_{1}(q^{2})&=&\frac{G_{1}(\omega)}{R_{D}},\\ F_{0}(q^{2})&=&R_{D}\frac{1+\omega}{2}G_{1}(\omega)\frac{1+r}{1-r}{\Delta} (\omega), \end{array} $$
(14)

with \(R_{D^{(*)}}=2\sqrt {m_{B}m_{D^{(*)}}}/(m_{B}+m_{D^{(*)}})\), \(r=m_{D^{(*)}}/m_{B}\) and \(\omega =({m_{B}^{2}}+m_{D^{(*)}}^{2}-q^{2})/(2m_{B}m_{D^{(*)}})\), therefore, we take Δ(ω) = 0.46 ± 0.02 [44], and

$$\begin{array}{@{}rcl@{}} G_{1}(\omega)&=&G_{1}(1)\left[1-8{\rho_{1}^{2}}z(\omega)+(51{\rho^{2}_{1}}-10)z(\omega)^{2}-(252{\rho^{2}_{1}}-84)z(\omega)^{3}\right], \end{array} $$
(15)

with \(z(\omega ) = (\sqrt {\omega +1}-\sqrt {2})/(\sqrt {\omega +1}+\sqrt {2})\) [39] and \({\rho _{1}^{2}}=1.186\pm 0.055\) [45].

The form factors of BD transition are [39]

$$\begin{array}{@{}rcl@{}} V(q^{2})&=&\frac{R_{1}(\omega)}{R_{D^{*}}}h_{A_{1}}(\omega),\\ A_{1}(q^{2})&=&R_{D^{*}}\frac{\omega+1}{2}h_{A_{1}}(\omega),\\ A_{2}(q^{2})&=&\frac{R_{2}(\omega)}{R_{D^{*}}}h_{A_{1}}(\omega),\\ A_{0}(q^{2})&=&\frac{R_{0}(\omega)}{R_{D^{*}}}h_{A_{1}}(\omega),\\ A_{3}(q^{2})&=&\frac{m_{B}+m_{D^{*}}}{2m_{D^{*}}}A_{1}(q^{2})-\frac{m_{B}-m_{D^{*}}}{2m_{D^{*}}}A_{2}(q^{2}), \end{array} $$
(16)

with

$$\begin{array}{@{}rcl@{}} h_{A_{1}}(\omega)&=&h_{A_{1}}(1)\left[1-8\rho^{2}z(\omega)+(53\rho^{2}-15)z(\omega)^{2}-(231\rho^{2}-91)z(\omega)^{3}\right],\\ R_{0}(\omega)&=&R_{0}(1)-0.11(\omega-1)+0.01(\omega-1)^{2},\\ R_{1}(\omega)&=&R_{1}(1)-0.12(\omega-1)+0.05(\omega-1)^{2},\\ R_{2}(\omega)&=&R_{2}(1)-0.11(\omega-1)-0.06(\omega-1)^{2}. \end{array} $$
(17)

For the free parameters, we take \(h_{A_{1}}(1)|V_{cb}|=(35.90\pm 0.45)\times 10^{-3}\), ρ 2=1.207±0.026, R 1(1) = 1.403±0.033 and R 2(1) = 0.854±0.020 from [45], in addition, R 3(1) = 0.97±0.10 taken from [46] and \(R_{0}(1) = \frac {[R_{3}(1)(1-r)^{2}-R_{2}(1)(1-r)]/r+2}{(1+r)}\) taken from the HQET prediction for the linear combination [40, 42, 47].

Appendix B: FF2

The form factors which include perturbative QCD corrections induced by hard gluon vertex corrections of bc transitions and power corrections in orders of 1/m b, c [41, 42].

$$\begin{array}{@{}rcl@{}} F_{1}(q^{2})&=&\frac{m_{B}+m_{D}}{2\sqrt{m_{B}m_{D}}}\left[\xi_{+}(\omega)-\frac{m_{B}-m_{D}}{m_{B}+m_{D}}\xi_{-}(\omega)\right],\\ F_{0}(q^{2})&=&\frac{m_{B}+m_{D}}{2\sqrt{m_{B}m_{D}}}\left[1-\frac{q^{2}}{(m_{B}+m_{D})^{2}}\right]\left\{\xi_{+}(\omega)-\frac{m_{B}+m_{D}}{m_{B}-m_{D}}\left( \frac{\omega-1}{\omega+1}\right)\xi_{-}(\omega)\right\},\\ V(q^{2})&=&\frac{m_{B}+m_{D^{*}}}{2\sqrt{m_{B}m_{D^{*}}}} \xi_{V}(\omega),\\ A_{1}(q^{2})&=&\frac{m_{B}+m_{D^{*}}}{2\sqrt{m_{B}m_{D^{*}}}}\left[1-\frac{q^{2}}{(m_{B}+m_{D^{*}})^{2}}\right]\xi_{A_{1}}(\omega),\\ A_{2}(q^{2})&=&\frac{m_{B}+m_{D^{*}}}{2\sqrt{m_{B}m_{D^{*}}}}\left[\xi_{A_{3}}(\omega)+\frac{m_{D^{*}}}{m_{B}}\xi_{A_{2}}(\omega)\right],\\ A_{3}(q^{2})&=&\frac{m_{B}+m_{D^{*}}}{2\sqrt{m_{B}m_{D^{*}}}}\left\{\frac{m_{B}(\omega+1)}{m_{B}+m_{D^{*}}}\xi_{A_{1}}(\omega)-\frac{m_{B}-m_{D^{*}}}{2m_{D^{*}}}\left[\xi_{A_{3}}(\omega)+\frac{m_{D^{*}}}{m_{B}}\xi_{A_{2}}(\omega)\right]\right\},\\ A_{0}(q^{2})&=&A_{3}(q^{2})+\frac{q^{2}}{4m_{B}m_{D^{*}}}\sqrt{\frac{m_{B}}{m_{D^{*}}}}\left[\xi_{A_{3}}(\omega)-\frac{m_{D^{*}}}{m_{B}}\xi_{A_{2}}(\omega)\right], \end{array} $$
(18)

with

$$\begin{array}{@{}rcl@{}} &&\xi_{i}(x) = (\alpha_{i}+\beta_{i}(m_{b},m_{c},x)+\gamma_{i}(x))\xi(x), \end{array} $$
(19)
$$\begin{array}{@{}rcl@{}} &&\alpha_{+,V,A_{1},A_{3}}=1, \alpha_{-,A_{2}}=0, \end{array} $$
(20)
$$\begin{array}{@{}rcl@{}} &&\beta_{+}=\hat{C}_{1}-\frac{x+1}{2}(\hat{C}_{2}+\hat{C}_{3})-1,\\ &&\beta_{-}=-\frac{x+1}{2}(\hat{C}_{2}-\hat{C}_{3}),\\ &&\beta_{V}=\hat{C}_{1}-1,\\ &&\beta_{A_{1}}=\hat{C}_{1}^{5}-1,\\ &&\beta_{A_{2}}=-\hat{C}_{2}^{5},\\ &&\beta_{A_{3}}=\hat{C}_{1}^{5}-\hat{C}_{3}^{5}-1, \end{array} $$
(21)
$$\begin{array}{@{}rcl@{}} &&\gamma_{+}(x) = \left( \frac{1}{m_{c}}+\frac{1}{m_{b}}\right)\rho_{1}(x),\\ &&\gamma_{-}(x) = \left( \frac{1}{m_{c}}-\frac{1}{m_{b}}\right)\left[-\frac{\bar{\Lambda}}{2}+\rho_{4}(x)\right],\\ &&\gamma_{V}(x) = \frac{\bar{\Lambda}}{2}\left( \frac{1}{m_{c}}+\frac{1}{m_{b}}\right)+\frac{1}{m_{c}}\rho_{2}(x)+\frac{1}{m_{b}}\left[\rho_{1}(x)-\rho_{4}(x)\right],\\ &&\gamma_{A_{1}}(x) = \frac{\bar{\Lambda}}{2}\frac{y-1}{y+1}\left( \frac{1}{m_{c}}+\frac{1}{m_{b}}\right)+\frac{1}{m_{c}}\rho_{2}(x)+\frac{1}{m_{b}}\left[\rho_{1}(x)-\frac{y-1}{y+1}\rho_{4}(x)\right],\\ \end{array} $$
$$\begin{array}{@{}rcl@{}} &&\gamma_{A_{2}}(x) = \frac{1}{y+1}\frac{1}{m_{c}}\left[-\bar{\Lambda}+(y+1)\rho_{3}(x)-\rho_{4}(x)\right],\\ &&\gamma_{A_{3}}(x) = \frac{\bar{\Lambda}}{2}\left( \frac{y-1}{y+1}\frac{1}{m_{c}}+\frac{1}{m_{b}}\right)+\frac{1}{m_{c}}\left[\rho_{2}(x)-\rho_{3}(x)-\frac{1}{y+1}\rho_{4}(x)\right]+\frac{1}{m_{b}}\left[\rho_{1}(x)-\rho_{4}(x)\right],\\ \end{array} $$
(22)

where Isgur-Wise function ξ(x) = 1−1.22(x−1)+0.85(x−1)2 taken from Ref. [43], in addition, \(\hat {C}_{i}\), ρ i (x) and \(\bar {\Lambda }\) can be found in Ref. [41].

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xu, YG., Wang, RM. Studying the Fourth Generation Quark Contributions to the Double Charm Decays \(B_{(s)} \to D_{(s)}^{(*)} D_{s}^{(*)}\) . Int J Theor Phys 55, 5290–5306 (2016). https://doi.org/10.1007/s10773-016-3149-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-016-3149-x

Keywords

Navigation