Skip to main content
Log in

Dense Coding in a Two-Spin Squeezing Model with Intrinsic Decoherence

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Quantum dense coding in a two-spin squeezing model under intrinsic decoherence with different initial states (Werner state and Bell state) is investigated. It shows that dense coding capacity χ oscillates with time and finally reaches different stable values. χ can be enhanced by decreasing the magnetic field Ω and the intrinsic decoherence γ or increasing the squeezing interaction μ, moreover, one can obtain a valid dense coding capacity (χ satisfies χ > 1) by modulating these parameters. The stable value of χ reveals that the decoherence cannot entirely destroy the dense coding capacity. In addition, decreasing Ω or increasing μ can not only enhance the stable value of χ but also impair the effects of decoherence. As the initial state is the Werner state, the purity r of initial state plays a key role in adjusting the value of dense coding capacity, χ can be significantly increased by improving the purity of initial state. For the initial state is Bell state, the large spin squeezing interaction compared with the magnetic field guarantees the optimal dense coding. One cannot always achieve a valid dense coding capacity for the Werner state, while for the Bell state, the dense coding capacity χ remains stuck at the range of greater than 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Belavkin, V., Hirota, O., Hudson, R.: Quantum Communications and Measurement (2009)

  2. Hirota, O., Holevo, A.S., Caves, C.M.: Kluwer Acad. Publishers 9 (1997)

  3. Kumar, P., D’Ariano, G.M., Hirota, O.: Kluwer Acad. Publishers, 9 (2001)

  4. Bouwmeester, D., Zeilinger, A.: Phys. Q. Inf. 64 (2001)

  5. Alber, G., Beth, T., Horodecki, P., Horodecki, R., Horodecki, M., Weinfurther, H., Werner, R., Zeilinger, A.: Quantum information. Springer, Berlin (2002)

    MATH  Google Scholar 

  6. Nielsen, M.A., Chuang, I.L.: Quantum computation and quantum information (2000)

  7. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wootters, W.K.: Phys. Rev. Lett. 70, 1895 (1999)

    Article  ADS  MathSciNet  Google Scholar 

  8. Bennett, C.H., Wiesner, S.J.: Phys. Rev. Lett. 69, 2881 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  9. Mattle, K., Weinfurter, H., Kwiat, P.G., Zeilinger, A.: Phys. Rev. Lett. 76, 4656 (1996)

    Article  ADS  Google Scholar 

  10. Fang, X.M., Zhu, X.W., Feng, M., et al.: Phys. Rev. A 61, 022307 (2000)

    Article  ADS  Google Scholar 

  11. Zhang, Y., Wang, H., Li, X.Y., et al.: Phys. Rev. A 62, 023813 (2000)

    Article  ADS  Google Scholar 

  12. Li, X.Y., Pan, Q., Jing, J.T., et al.: Phys. Rev. Lett. 88, 047904 (2002)

    Article  ADS  Google Scholar 

  13. Mattle, K., Weinfurter, H., Kwiat, P.G., Zeilinger, A.: Phys. Rev. Lett. 76, 4656 (1996)

    Article  ADS  Google Scholar 

  14. Barenco, A., Ekert, A.: J. Mod. Opt. 42, 1253 (1995)

    Article  ADS  Google Scholar 

  15. Braunstein, S.L., Kimble, H.J.: Phys. Rev. A 61, 042302 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  16. Bose, S., Plenio, M.B., Vedral, V.: J. Mod. Opt. 47, 291 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  17. Holevo, A.S.: Prob. Inf. Transm. 9, 177 (1973)

    MathSciNet  Google Scholar 

  18. Holevo, A.S.: IEEE Trans. Inf. Theory 44, 269 (1998). Schumacher, B., Westmoreland, M.D.: Phys. Rev. A 56, 131 (1997)

  19. Hiroshima, T.: J. Phys. A 34, 6907 (2000)

    Article  ADS  MathSciNet  Google Scholar 

  20. Ekert, A.K.: Phys. Rev. Lett. 67, 661 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  21. Wang, X.: Phys. Rev. A 64, 012313 (2001)

    Article  ADS  Google Scholar 

  22. Kamta, G.L., Starace, A.F.: Phys. Rev. Lett. 88, 107901 (2002)

    Article  ADS  Google Scholar 

  23. Zhang, G.F., Li, S.S.: Phys. Rev. A 72, 034302 (2005)

    Article  ADS  Google Scholar 

  24. Loss, D., DiVincenzo, D.P.: Phys. Rev. A 57, 120 (1998). Burkard, G., Loss, D., DiVincenzo, D.P.: Phys. Rev. B 59, 2070 (1999)

    Article  ADS  Google Scholar 

  25. Glaser, U., Büttner, H., Fehske, H.: Phys. Rev. A 68, 032318 (2003)

    Article  ADS  Google Scholar 

  26. Abliz, A., Cai, J.T., Zhang, G.F., Jin, G.S.: Mol. Opt. Phys. 42, 215503 (2009)

    Article  ADS  Google Scholar 

  27. Kitagawa, M., Ueda, M.: Phys. Rev. A 47, 5138 (1993)

    Article  ADS  Google Scholar 

  28. Wang, X., Sanders, B.C.: Phys. Rev. A 68, 012101 (2003)

    Article  ADS  Google Scholar 

  29. Milburn, G.J.: Phys. Rev. A 44, 5401 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  30. Shao, B., Zeng, T.H., Zou, J.: Commun. Theor. Phys. 44 (2005)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo-Hui Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, BB., Yang, GH. Dense Coding in a Two-Spin Squeezing Model with Intrinsic Decoherence. Int J Theor Phys 55, 4731–4739 (2016). https://doi.org/10.1007/s10773-016-3096-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-016-3096-6

Keywords

Navigation