Skip to main content
Log in

Dense Coding in Two Kinds of Two-Qubit Spin Squeezing Model

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We investigate the effects of spin squeezing interaction, external magnetic field and temperature on dense coding capacity properties in two kinds of two-qubit spin squeezing model: one-axis twisting model (OATM) and two-axis countertwisting model (TACM). To the OATM, it is found that the value of dense coding capacity χ is larger than 1 in the region of larger values of Ω(external magnetic filed) and μ(squeezing interaction) parameters space, while in the region of lower values of Ω and μ parameters space, χ is always less than 1 and not valid for dense coding. With increasing temperature T the dense coding capacity is decayed, and one can carry out the valid dense coding in the lower T region through tuning Ω. To the TACM, it is found that the value of χ is promoted with increasing the squeezing parameter γ. Through increasing γ, χ finally reached to one stable value, which is always larger than 1 whatever value of Ω is. The valid dense coding capacity χ can be enhanced through tuning the parameter Ω or γ, but it is decreased with increasing T. Our results show that with proper enhancing the parameter Ω or γ it is easy to carry out the valid dense coding (χ > 1) and the optimal dense coding (χ = 2) when the system in TACM.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Nielsen, M.A., Chuang, I.L.: Quantum Computation and Quantum Information. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  2. Bennett, C.H., Bernstein, H.J.: Phys. Rev. A 56, R3319 (1997)

    Article  Google Scholar 

  3. Bennett, C.H., Divincenze, D.P.: Nature(London) 404, 247 (2000)

    Article  ADS  Google Scholar 

  4. Ekert, A.K.: Phys. Rev. Lett 67, 661 (1991)

    Article  ADS  MathSciNet  Google Scholar 

  5. Bennett, C.H., Brassard, G., Crepeau, C., Jozsa, R., Peres, A., Wooters, K.: Phys. Rev. Lett. 70, 1895 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  6. Bennett, C.H., Wiesner, S.J.: Phys. Rev. Lett 69, 2881 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  7. Mattle, K., Weinfurter, H., Kwiat, P.G., Zeilinger, A.: Phys. Rev. Lett 76, 4656 (1996)

    Article  ADS  Google Scholar 

  8. Barenco, A., Ekert, A.K.: J. Mod. Opt. 42, 1253 (1995)

    Article  ADS  Google Scholar 

  9. Zhao, X., Li, Y.Q., Cheng, L.Y., Yang, G.H.: Int. J. Theor. Phys. 58, 493 (2019)

    Article  Google Scholar 

  10. Xu, H.Y., Yang, G.H.: Int. J. Theor. Phys. 56, 2803 (2017)

    Article  Google Scholar 

  11. Holevo, A.S.: Probl. Inf. Trans. 9, 177 (1973)

    Google Scholar 

  12. Schunacher, B., Westmoreland, M.D.: Phys. Rev. A 56, 131 (1997)

    Article  ADS  Google Scholar 

  13. Hiroshima, T.: J. Phys. A 34, 6907 (2001)

    Article  ADS  MathSciNet  Google Scholar 

  14. Khveshchenko, D.V.: Phys. Rev. B 68, 193307 (2003)

    Article  ADS  Google Scholar 

  15. Zhang, G.F., Li, S.S.: Phys. Rev. A 72, 034302 (2005)

    Article  ADS  Google Scholar 

  16. Wilde, M.M.: Quantum Information Theory. Cambridge University Press, Cambridge (2013)

    Book  MATH  Google Scholar 

  17. Kzne, B.E.: Nature 133, 393 (1998)

    Google Scholar 

  18. Sorensen, A., Duan, L.M., Cirac, J.I., Zoller, P.: Nature 63, 409 (2001)

    Google Scholar 

  19. Sun, Z., Wang, X.G., Sun, C.P.: Phys. Rev. A 75, 052317 (2007)

    Article  ADS  Google Scholar 

  20. Yeo, Y., Liu, T., Lu, Y.E., Yang, Q.Z.: J. Phys. A 68, 032318 (2003)

    Google Scholar 

  21. Kao, Z.C., Ng, J., Yeo, Y.: Phys. Rev. A 72, 062302 (2005)

    Article  ADS  Google Scholar 

  22. Kitagawa, M., Ueda, M.: Phys. Rev. A 47, 5138 (1993)

    Article  ADS  Google Scholar 

  23. Sanders, B.C.: Phys. Rev. A 40, 2417 (1989)

    Article  ADS  Google Scholar 

  24. Wang, X., Sanders, B.C.: Phys. Rev. A 68, 012101 (2003)

    Article  ADS  Google Scholar 

  25. Hiroshima, T.: J. Phys. A 34, 6907 (2001)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

This project was supported by the Natural Science Foundation for Young Scientists of Shanxi Province, China (Grant No. 2012021003-3) and the special funds of the National Natural Foundation of China (Grant No. 11247247).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiang-Fu Jia or Guo-Hui Yang.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, YQ., Zhao, X., Jia, XF. et al. Dense Coding in Two Kinds of Two-Qubit Spin Squeezing Model. Int J Theor Phys 58, 3602–3610 (2019). https://doi.org/10.1007/s10773-019-04225-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-019-04225-1

Keywords

Navigation