Skip to main content
Log in

Negativity and Quantum Phase Transition in the Spin Model Using the Quantum Renormalization-group Method

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In this paper, we study the anisotropy parameter and Dzyaloshinskii-Moriya (DM) interaction on negativity and quantum phase transition (QPT) by using the quantum renormalization-group (QRG) method in the spin model. In our model, the anisotropy parameter and DM interaction can influence the phase diagrams. Negativity can develop two different values which separated two phases i.e. Spin-fluid phase and the Néel phase with the number of QRG iterations increased, and can obviously exhibit QPT at the critical point. Then, we find that negativity of particles 1, 3 throughout is less than negativity of particles 1, 2 or particles 2, 3. Because of information between the three particle distributions, please see the conclusion. We find that the negativity difference value (S) can also clearly detect QPT at the critical point. Most importantly, the maximum S max become more and more close to the critical point. So S max can be used as a criterion of the quantum phase transition occurrence when the spin chain is infinity (N).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Einstein, A., Podolsky, B., Rosen, N.: Phys. Rev. 47, 777–780 (1935)

    Article  ADS  Google Scholar 

  2. Nilsen, M.A., Chuang, I.L.: Quantum computation and quantum communication. Cambridge University Press, Cambridge (2000)

    Google Scholar 

  3. Bell, J. S.: Phys. (Long Island City, N.Y.) 195, 1 (1964)

    Google Scholar 

  4. Zheng, S. B., Guo, G.C.: PRL 85, 2392 (2000)

    Article  ADS  Google Scholar 

  5. Horodecki, R., Horodecki, P., Horodecki, M., Horodecki, K.: Rev. Modern Phys. 81, 865 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  6. Bell, J.S.: Physics 1, 195 (1964)

    Google Scholar 

  7. Bennett, C.H., DiVincenzo, D.P.: Nature (London) 404, 247–255 (2000)

    Article  ADS  Google Scholar 

  8. Datta, A., Shaji, A., Caves, C.M.: PRL 100, 050–502 (2008)

    Article  Google Scholar 

  9. Osterloh, A., Amico, L., Falci, G., Fazio, R.: Nature 416, 608–610 (2002). London

    Article  ADS  Google Scholar 

  10. Osborne, T.J., Verstraete, F.: PRL 220–503, 96 (2006)

    Google Scholar 

  11. Wu, L.-A., Sarandy, M.S., Lidar, D.A.: PRL 93, 250–404 (2004)

    MathSciNet  Google Scholar 

  12. Karpat, G., Çakmak, B., Fanchini, F. F.: Phys. Rev. B 90, 104–431 (2014)

    Article  Google Scholar 

  13. Vidal, G., Latorre, J.I., Rico, E., Kitaev, A.: PRL 90, 227–902 (2003)

    Article  Google Scholar 

  14. Amico, L., Fazio, R., Osterloh, A., Vedral. V.: Rev. Mod. Phys. 80, 517–576 (2008)

    Article  ADS  Google Scholar 

  15. Vidal, G.: Phys. Rev. Lett. 99, 220–405 (2007)

    Article  MathSciNet  Google Scholar 

  16. Koashi, M., Winter, A.: Phys. Rev. A 69, 022–309 (2004)

    Article  MathSciNet  Google Scholar 

  17. Ma, F.-W., Liu, S.-X., Kong, X.-M.: Phys. Rev. A 83, 062–309 (2011)

    Google Scholar 

  18. Ma, F.-W., Liu, S.-X., Kong, X.-M.: Phys. Rev. A 84, 042–302 (2011)

    Google Scholar 

  19. Wolf, M.M., Ortiz, G., Verstraete, F., Cirac, J. I.: PRL 97, 110–403 (2006)

    Article  Google Scholar 

  20. Wilson, K. G.: Rev. Mod. Phys. 47, 773 (1975)

    Article  ADS  Google Scholar 

  21. Pefeuty, P., Jullian, R., Penson, K. L. 5. In: Burkhardt, T.W., vanLeeuwen, J.M.J. (eds.) : In Real-Space Renormalizaton. Springer, Berlin (1982)

    Google Scholar 

  22. Langari, A.: Phys. Rev. B 69, 100–402 (R) (2004)

    Article  Google Scholar 

  23. Luoa, b, D.-W., Xua, J.-B.: Ann. Phys. 354, 298–305 (2015)

  24. Jafari, R., Langari, A. arXiv:0812.1862v1

  25. Li, P. H. Y., Bishop, R. F., Campbell, C. E.: Phys. Rev. B 89, 220–408 R (2014)

    Google Scholar 

  26. Jafari, R., Kargarian, M., Langari, A., Siahatgar, M.: Phys. Rev. B 78, 214–414 (2008)

    Article  Google Scholar 

  27. Kargarian, M., Jafari, R., Langari, A.: Phys. Rev. A 77, 032–346 (2008)

    Article  Google Scholar 

  28. Dzyaloshinsky, I.: J. Phys Chem. Solids 4, 241 (1958)

    Article  ADS  Google Scholar 

  29. Moriya, T.: Phys. Rev. 120, 91 (1960)

    Article  ADS  Google Scholar 

  30. Zhang, G.F.: Phys. Rev. A 75, 034–304 (2007)

    Google Scholar 

  31. Kargarian, M., Jafari, R., Langari, A.: Phys. Rev. A 79, 042–319 (2009)

    Article  Google Scholar 

  32. Song, X.K., Wu, T., Xu, S., He, J., Ye, L.: Ann. Phys. 349, 220–231 (2014)

    Article  ADS  Google Scholar 

  33. Gu, S.-J., Lin, H.-Q., Li, Y.-Q.: Phys. Rev. A 68, 042–330 (2003)

    Google Scholar 

  34. Gu, S.-J., Tian, G.-S., Lin, H.-Q. Phys. Rev. A

Download references

Acknowledgments

This work was supported by the National Science Foundation of China under Grant Nos. 61275119 and 11575001, and also by the Natural Science Research Project of Education Department of Anhui Province of China (Grant No. KJ2013A205).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liu Ye.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, WY., Xu, S., Liu, CC. et al. Negativity and Quantum Phase Transition in the Spin Model Using the Quantum Renormalization-group Method. Int J Theor Phys 55, 2548–2557 (2016). https://doi.org/10.1007/s10773-015-2890-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-015-2890-x

Keywords

Navigation