Skip to main content
Log in

Renormalization of magic and quantum phase transition in spin models

  • Published:
Quantum Information Processing Aims and scope Submit manuscript

Abstract

The interplay of quantum information theory and condensed matter physics has generated fruitful results, which promote our understanding of quantum phase transition. Magic, as a crucial resource in fault-tolerant quantum computation, may provide new insights into quantum phase transition. Based on quantum renormalization group method, we investigate the role magic plays in detecting quantum phase transition in the one-dimensional anisotropic XXZ model and XY model. The quantifier of magic we employed is defined via the characteristic functions of quantum states; it not only has nice properties, but also can be straightforwardly calculated. As the iteration steps of quantum renormalization group increase in the spin models, the magic quantifier achieves its maximum, while the first-order derivative of the magic is discontinuous around the critical points, which are signatures of quantum phase transition. The scaling behavior of the renormalized magic in terms of the system size is demonstrated, and a comparative study with coherence is made.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability statement

All data generated or analyzed during this study are included in this published article.

References

  1. Sachdev, S.: Quantum Phase Transitions. Cambridge University Press (2011)

  2. Sondhi, S.L., Girvin, S., Carini, J., Shahar, D.: Continuous quantum phase transitions. Rev. Mod. Phys. 69(1), 315 (1997)

    Article  ADS  Google Scholar 

  3. Osterloh, A., Amico, L., Falci, G., Fazio, R.: Scaling of entanglement close to a quantum phase transition. Nature 416(6881), 608–610 (2002)

    Article  ADS  Google Scholar 

  4. Osborne, T.J., Nielsen, M.A.: Entanglement in a simple quantum phase transition. Phys. Rev. A 66(3), 032110 (2002)

    Article  ADS  MathSciNet  Google Scholar 

  5. Vidal, G., Latorre, J.I., Rico, E., Kitaev, A.: Entanglement in quantum critical phenomena. Phys. Rev. Lett. 90(22), 227902 (2003)

    Article  ADS  Google Scholar 

  6. Vidal, J., Palacios, G., Mosseri, R.: Entanglement in a second-order quantum phase transition. Phys. Rev. A 69(2), 022107 (2004)

    Article  ADS  Google Scholar 

  7. Gu, S.-J., Lin, H.-Q., Li, Y.-Q.: Entanglement, quantum phase transition, and scaling in the XXZ chain. Phys. Rev. A 68(4), 042330 (2003)

    Article  ADS  Google Scholar 

  8. Gu, S.-J., Tian, G.-S., Lin, H.-Q.: Ground-state entanglement in the XXZ model. Phys. Rev. A 71(5), 052322 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  9. Kargarian, M., Jafari, R., Langari, A.: Dzyaloshinskii-Moriya interaction and anisotropy effects on the entanglement of the Heisenberg model. Phys. Rev. A 79(4), 042319 (2009)

    Article  ADS  Google Scholar 

  10. Kargarian, M., Jafari, R., Langari, A.: Renormalization of entanglement in the anisotropic Heisenberg (XXZ) model. Phys. Rev. A 77(3), 032346 (2008)

    Article  ADS  Google Scholar 

  11. Ma, F.-W., Liu, S.-X., Kong, X.-M.: Entanglement and quantum phase transition in the one-dimensional anisotropic XY model. Phys. Rev. A 83(6), 062309 (2011)

    Article  ADS  Google Scholar 

  12. Song, X.-K., Wu, T., Ye, L.: Negativity and quantum phase transition in the anisotropic XXZ model. Eur. Phys. J. D 67(5), 1–4 (2013)

    Article  Google Scholar 

  13. Karpat, G., Çakmak, B., Fanchini, F.: Quantum coherence and uncertainty in the anisotropic XY chain. Phys. Rev. B 90(10), 104431 (2014)

    Article  ADS  Google Scholar 

  14. Hu, M.-L., Gao, Y.-Y., Fan, H.: Steered quantum coherence as a signature of quantum phase transitions in spin chains. Phys. Rev. A 101(3), 032305 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  15. Qin, M., Ren, Z., Zhang, X.: Dynamics of quantum coherence and quantum phase transitions in XY spin systems. Phys. Rev. A 98(1), 012303 (2018)

    Article  ADS  Google Scholar 

  16. Wu, W., Xu, J.-B.: Quantum renormalization group approach to quantum coherence and multipartite entanglement in an XXZ spin chain. Phys. Lett. A 381(4), 239–244 (2017)

    Article  Google Scholar 

  17. Qiu, L., Tang, G., Yang, X.-Q., Wang, A.-M.: Relating tripartite quantum discord with multisite entanglement and their performance in the one-dimensional anisotropic XXZ model. EPL Europhys. Lett. 105(3), 30005 (2014)

    Article  ADS  Google Scholar 

  18. Dillenschneider, R.: Quantum discord and quantum phase transition in spin chains. Phys. Rev. B 78(22), 224413 (2008)

    Article  ADS  Google Scholar 

  19. Yao, Y., Li, H.-W., Zhang, C.-M., Yin, Z.-Q., Chen, W., Guo, G.-C., Han, Z.-F.: Performance of various correlation measures in quantum phase transitions using the quantum renormalization-group method. Phys. Rev. A 86(4), 042102 (2012)

    Article  ADS  Google Scholar 

  20. Zanardi, P., Paunković, N.: Ground state overlap and quantum phase transitions. Phys. Rev. E 74(3), 031123 (2006)

    Article  ADS  MathSciNet  Google Scholar 

  21. Dai, H., Fu, S., Luo, S.: Spin nonclassicality and quantum phase transition in the XY spin model. Phys. Scr. 95(10), 105107 (2020)

    Article  ADS  Google Scholar 

  22. Gottesman, D.: The heisenberg representation of quantum computers. arXiv preprint arXiv:quant-ph/9807006 (1998)

  23. Veitch, V., Mousavian, S.H., Gottesman, D., Emerson, J.: The resource theory of stabilizer quantum computation. New J. Phys. 16(1), 013009 (2014)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Howard, M., Campbell, E.: Application of a resource theory for magic states to fault-tolerant quantum computing. Phys. Rev. Lett. 118(9), 090501 (2017)

    Article  ADS  Google Scholar 

  25. Wilson, K.G.: Renormalization group and critical phenomena. i. renormalization group and the kadanoff scaling picture. Phys. Rev. B 4(9), 3174 (1971)

    Article  ADS  MATH  Google Scholar 

  26. Wilson, K.G.: Renormalization group and critical phenomena. ii. phase-space cell analysis of critical behavior. Phys. Rev. B 4(9), 3184 (1971)

    Article  ADS  MATH  Google Scholar 

  27. Wilson, K.G.: The renormalization group: critical phenomena and the kondo problem. Rev. Mod. Phys. 47(4), 773 (1975)

    Article  ADS  MathSciNet  Google Scholar 

  28. Dai, H., Fu, S., Luo, S.: Detecting magic states via characteristic functions. Int. J. Theor. Phys. 61(2), 1–18 (2022)

    Article  MathSciNet  MATH  Google Scholar 

  29. Knill, E.: Fault-tolerant postselected quantum computation: Schemes. arXiv preprint arXiv:quant-ph/0402171 (2004)

  30. Heinrich, M., Gross, D.: Robustness of magic and symmetries of the stabiliser polytope. Quantum 3, 132 (2019)

    Article  Google Scholar 

  31. Bravyi, S., Smith, G., Smolin, J.A.: Trading classical and quantum computational resources. Phys. Rev. X 6(2), 021043 (2016)

    Google Scholar 

  32. Bravyi, S., Gosset, D.: Improved classical simulation of quantum circuits dominated by clifford gates. Phys. Rev. Lett. 116(25), 250501 (2016)

    Article  ADS  Google Scholar 

  33. Bravyi, S., Browne, D., Calpin, P., Campbell, E., Gosset, D., Howard, M.: Simulation of quantum circuits by low-rank stabilizer decompositions. Quantum 3, 181 (2019)

    Article  Google Scholar 

  34. Wang, X., Wilde, M.M., Su, Y.: Efficiently computable bounds for magic state distillation. Phys. Rev. Lett. 124(9), 090505 (2020)

    Article  ADS  MathSciNet  Google Scholar 

  35. Liu, Z.-W., Winter, A.: Many-body quantum magic. PRX. Quantum 3(2), 020333 (2022)

    ADS  Google Scholar 

  36. Regula, B.: Probabilistic transformations of quantum resources. Phys. Rev. Lett. 128(11), 110505 (2022)

    Article  ADS  MathSciNet  Google Scholar 

  37. Leone, L., Oliviero, S.F., Hamma, A.: Stabilizer Rényi entropy. Phys. Rev. Lett. 128(5), 050402 (2022)

    Article  ADS  Google Scholar 

  38. Martin-Delgado, M.A., Sierra, G.: Analytic formulations of the density matrix renormalization group. Int. J. Mod. Phys. A 11(17), 3145–3174 (1996)

    Article  ADS  Google Scholar 

  39. Baumgratz, T., Cramer, M., Plenio, M.B.: Quantifying coherence. Phys. Rev. Lett. 113(14), 140401 (2014)

    Article  ADS  Google Scholar 

  40. Martin-Delgado, M.A., Sierra, G.: Real space renormalization group methods and quantum groups. Phys. Rev. Lett. 76(7), 1146 (1996)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Fundamental Research Funds for the Central Universities, Grant No. FRF-TP-19-012A3.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuangshuang Fu.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Renormalization of XXZ spin model under QRG method

The Hamiltonian of the one-dimensional anisotropic XXZ model on a periodic chain of N sites is [10]

$$\begin{aligned} H(J,\Delta )=\frac{J}{4}\sum _{k=1}^{N}(\sigma ^{x}_{k}\sigma ^{x}_{k+1}+\sigma ^{y}_{k}\sigma ^{y}_{k+1} +\Delta \sigma ^{z}_{k}\sigma ^{z}_{k+1}), \end{aligned}$$

where \(J,\Delta > 0\), J is the exchange constant, \(\Delta \) is the anisotropy parameter, and \(\sigma ^{\alpha }_{k}(\alpha =x,y,z)\) denotes Pauli matrices at site k. The spin chain is divided into three-site blocks [40] (by the Kadanoff’s block approach given in Fig. 7) to get a self-similar Hamiltonian

$$\begin{aligned} h^I_l=\frac{J}{4}[\sigma ^{x}_{l,1}\sigma ^{x}_{l,2}+\sigma ^{x}_{l,2}\sigma ^{x}_{l,3}+\sigma ^{y}_{l,1}\sigma ^{y}_{l,2} +\sigma ^{y}_{l,2}\sigma ^{y}_{l,3}+\Delta (\sigma ^{z}_{l,1}\sigma ^{z}_{l,2}+\sigma ^{z}_{l,2}\sigma ^{z}_{l,3})], \end{aligned}$$

where \(\sigma ^{\alpha }_{l,j}\) refers to the corresponding Pauli matrix \(\alpha \) (\(\alpha =x,y,z\)) at site j (j=1,2,3) of the l-th block.

The intra-block \(H^I\) and the inter-block \(H^{II}\) Hamiltonian are

$$\begin{aligned} H^I=\sum _{l}^{N/3}h^I_l,\qquad H^{II}=\frac{J}{4}\sum _{l}^{N/3}(\sigma ^{x}_{l,3}\sigma ^{x}_{l+1,1}+\sigma ^{y}_{l,3}\sigma ^{y}_{l+1,1}+\Delta \sigma ^{z}_{l,3}\sigma ^{z}_{l+1,1}), \end{aligned}$$

respectively.

Fig. 7
figure 7

Using Kadanoff’s block approach, the Hamiltonian of the system in one-dimensional XXZ chain is divided into intra-block Hamiltonian \(H^I\) and inter-block Hamiltonian \(H^{II}\). In this way, an effective Hamiltonian \(H^\mathrm{{eff}}\) can be obtained by projecting the Hamiltonian H onto the renormalized space

The two degenerate ground states are

$$\begin{aligned} |\phi _0\rangle= & {} \frac{1}{\sqrt{2+q^2}}(|\uparrow \uparrow \downarrow \rangle +q|\uparrow \downarrow \uparrow \rangle +|\downarrow \uparrow \uparrow \rangle ),\\ |\phi ^{'}_0\rangle= & {} \frac{1}{\sqrt{2+q^2}}(|\uparrow \downarrow \downarrow \rangle +q|\downarrow \uparrow \downarrow \rangle +|\downarrow \downarrow \uparrow \rangle ) \end{aligned}$$

where \(q=-\frac{1}{2}(\Delta +\sqrt{\Delta ^{2}+8})\), \(|\uparrow \rangle \) and \(|\downarrow \rangle \) are the eigenstates of \(\sigma ^{z}\).

The projection operator \(P_{0}\) is expressed as

$$\begin{aligned} P_0=\prod \limits _{l}^{N/3}P^l_0, \end{aligned}$$

where \(P^l_0 \) is the projection operator \(P_{0}\) for the l-th block, which is defined as

$$\begin{aligned} P^l_0=|\Uparrow \rangle _l\langle \phi _0|+|\Downarrow \rangle _l\langle \phi ^{'}_0|, \end{aligned}$$

with \(|\Uparrow \rangle _l\) and \(|\Downarrow \rangle _l\) being the renamed states of each block to represent the effective site degrees of freedom. The renormalization of Pauli matrices can be calculated as

$$\begin{aligned} P^l_0\sigma ^{\alpha }_{l,i}P^l_0=\xi ^{\alpha }_l\sigma ^{'\alpha }_l\quad \quad ( i=1,2,3; \alpha =x,y,z) \end{aligned}$$

with

$$\begin{aligned} \xi ^{x,y}_1=\xi ^{x,y}_3=\frac{2q}{2+q^2},\quad \xi ^{x,y}_2=\frac{2}{2+q^2},\quad \xi ^{z}_1=\xi ^{z}_3=\frac{q^2}{2+q^2},\quad \xi ^{z}_2=\frac{2-q^2}{2+q^2}, \end{aligned}$$

where the indices 1,2,3 refer to the first, second and third site of each block.

The effective Hamiltonian \(H^\mathrm{{eff}}\) can be written as

$$\begin{aligned} H^\mathrm{{eff}}= H^\mathrm{{eff}}_0+H^\mathrm{{eff}}_1=P_0H^IP_0+P_0H^{II}P_0, \end{aligned}$$

from which we obtain

$$\begin{aligned} H^\mathrm{{eff}}= \frac{J^{'}}{4}\sum ^{N/3}_{k=1}(\sigma ^{x}_{k}\sigma ^{x}_{k+1} +\sigma ^{y}_{k}\sigma ^{y}_{k+1}+\Delta ^{'}\sigma ^{z}_{k}\sigma ^{z}_{k+1}) \end{aligned}$$

with

$$\begin{aligned} J^{'}=J{(\frac{2q}{2+q^2})}^2,\qquad \Delta ^{'}=\Delta \frac{q^2}{4}. \end{aligned}$$

Appendix B: Calculation of the magic \(M(\rho )\) on the ground state in XXZ model

The density matrix of the ground state in XXZ model is expressed as

$$\begin{aligned} \begin{aligned} \rho =|\phi _0\rangle \langle \phi _0|=&\tfrac{1}{2+q^2}(|\uparrow \rangle \langle \uparrow |\otimes |\uparrow \rangle \langle \uparrow |\otimes |\downarrow \rangle \langle \downarrow |\\&+q|\uparrow \rangle \langle \uparrow |\otimes |\uparrow \rangle \langle \downarrow |\otimes |\downarrow \rangle \langle \uparrow |+|\uparrow \rangle \langle \downarrow |\otimes |\uparrow \rangle \langle \uparrow |\otimes |\downarrow \rangle \langle \uparrow |\\&+q|\uparrow \rangle \langle \uparrow |\otimes |\downarrow \rangle \langle \uparrow |\otimes |\uparrow \rangle \langle \downarrow |+q^2|\uparrow \rangle \langle \uparrow |\otimes |\downarrow \rangle \langle \downarrow |\otimes |\uparrow \rangle \langle \uparrow |\\&+q|\uparrow \rangle \langle \downarrow |\otimes |\downarrow \rangle \langle \uparrow |\otimes |\uparrow \rangle \langle \uparrow |+|\downarrow \rangle \langle \uparrow |\otimes |\uparrow \rangle \langle \uparrow |\otimes |\uparrow \rangle \langle \downarrow |\\&+q|\downarrow \rangle \langle \uparrow |\otimes |\uparrow \rangle \langle \downarrow |\otimes |\uparrow \rangle \langle \uparrow |+|\downarrow \rangle \langle \downarrow |\otimes |\uparrow \rangle \langle \uparrow |\otimes |\uparrow \rangle \langle \uparrow |). \end{aligned} \end{aligned}$$
(B1)

The magic in the three-site block can be written as

$$\begin{aligned} M(\rho )=\sum _{\varvec{k} }|\textrm{tr} (\rho \sigma ^{\varvec{k}} )|=\sum _{k_1,k_2,k_3} |\textrm{tr} (\rho \sigma ^{k_1}\otimes \sigma ^{k_2}\otimes \sigma ^{k_3})| \end{aligned}$$
(B2)

where \(k_j=0,x,y,z (j=1,2,3)\). Substituting the quantum state in Eq. (B1) into Eq. (B2), we can straightforwardly calculate the trace of the product between \(\rho \) and each of the 64 combinations \(\sigma ^{k_1}\otimes \sigma ^{k_2}\otimes \sigma ^{k_3}\), respectively. For example,

$$\begin{aligned} {\begin{matrix} |\textrm{tr} (\rho \sigma ^{0}\otimes \sigma ^{0}\otimes \sigma ^{0})|&{} =|\textrm{tr} (\rho \textbf{1}\otimes \textbf{1}\otimes \textbf{1})|=\tfrac{1}{2+q^2}|\langle \uparrow |\textbf{1}|\uparrow \rangle \times \langle \uparrow |\textbf{1}|\uparrow \rangle \times \langle \downarrow |\textbf{1}|\downarrow \rangle \\ &{}\quad +q\langle \uparrow |\textbf{1}|\uparrow \rangle \times \langle \uparrow |\textbf{1}|\downarrow \rangle \times \langle \downarrow |\textbf{1}|\uparrow \rangle +\langle \uparrow |\textbf{1}|\downarrow \rangle \langle \uparrow |\textbf{1}|\uparrow \rangle \times \langle \downarrow |\textbf{1}|\uparrow \rangle \\ &{}\quad +q\langle \uparrow |\textbf{1}|\uparrow \rangle \times \langle \downarrow |\textbf{1}|\uparrow \rangle \times \langle \uparrow |\textbf{1}|\downarrow \rangle +q^2\langle \uparrow |\textbf{1}|\uparrow \rangle \times \langle \downarrow |\textbf{1}|\downarrow \rangle \times \langle \uparrow |\textbf{1}|\uparrow \rangle \\ &{}\quad +q\langle \uparrow |\textbf{1}|\downarrow \rangle \times \langle \downarrow |\textbf{1}|\uparrow \rangle \times \langle \uparrow |\textbf{1}|\uparrow \rangle +\langle \downarrow |\textbf{1}|\uparrow \rangle \times \langle \uparrow |\textbf{1}|\uparrow \rangle \times \langle \uparrow |\textbf{1}|\downarrow \rangle \\ &{}\quad +q\langle \downarrow |\textbf{1}|\uparrow \rangle \times \langle \uparrow |\textbf{1}|\downarrow \rangle \times \langle \uparrow |\textbf{1}|\uparrow \rangle +\langle \downarrow |\textbf{1}|\downarrow \rangle \times \langle \uparrow |\textbf{1}|\uparrow \rangle \times \langle \uparrow |\textbf{1}|\uparrow \rangle |\\ &{}=\tfrac{1}{2+q^2}|1+q^2+1|=1. \end{matrix}} \end{aligned}$$

Similarly, another combination \(|\textrm{tr} (\rho \sigma ^{z}\otimes \sigma ^{z}\otimes \sigma ^{z})|\) has the same result 1. By analogous method, we can calculate all 64 traces; adding these values together, we get the value of the magic as

$$\begin{aligned} M(\rho )=\frac{2|q^2-2|+6q^2+16|q|+12}{2+q^2}. \end{aligned}$$

Appendix C: Renormalization of XY spin model under QRG method

The Hamiltonian of the XY model on a periodic chain with N sites reads [11]

$$\begin{aligned} H(J,\gamma )=\frac{J}{4}\sum _{k=1}^{N}[(1+\gamma )\sigma ^{x}_{k}\sigma ^{x}_{k+1}+(1-\gamma )\sigma ^{y}_{k}\sigma ^{y}_{k+1}], \end{aligned}$$
(C3)

where \(J>0\) and \(-1<\gamma <1\), J is the exchange coupling constant, \(\gamma \) is the anisotropy parameter, and \(\sigma ^{\alpha }_{k}\) are Pauli matrices at site k. After one renormalization, the Hamiltonian H is divided into the intra-block \(H^I\) and the inter-block \(H^{II}\) Hamiltonian as

$$\begin{aligned} H^I= & {} \frac{J}{4}\sum _{l}^{N/3}[(1+\gamma )(\sigma ^{x}_{l,1}\sigma ^{x}_{l,2} +\sigma ^{x}_{l,2}\sigma ^{x}_{l,3})+(1-\gamma )(\sigma ^{y}_{l,1}\sigma ^{y}_{l,2}+\sigma ^{y}_{l,2}\sigma ^{y}_{l,3})],\\ H^{II}= & {} \frac{J}{4}\sum _{l}^{N/3}[(1+\gamma )\sigma ^{x}_{l,3}\sigma ^{x}_{l+1,1}+(1-\gamma )\sigma ^{y}_{l,3}\sigma ^{y}_{l+1,1}], \end{aligned}$$

where \(\sigma ^{\alpha }_{l,j}\) refers to the \(\alpha \) (\(\alpha =x,y,z\)) of the Pauli matrix at site j (j=1,2,3) of the l-th block Hamiltonian.

The two degenerate ground states of XY Hamiltonian are

$$\begin{aligned} |\psi _0\rangle= & {} \frac{1}{2\sqrt{1+{\gamma }^2}}(-\sqrt{1+{\gamma }^2}|\uparrow \uparrow \downarrow \rangle +\sqrt{2}|\uparrow \downarrow \uparrow \rangle -\sqrt{1+{\gamma }^2}|\downarrow \uparrow \uparrow \rangle +\sqrt{2}\gamma |\downarrow \downarrow \downarrow \rangle ),\\ |\psi ^{'}_0\rangle= & {} \frac{1}{2\sqrt{1+{\gamma }^2}}(\sqrt{1+{\gamma }^2}|\downarrow \downarrow \uparrow \rangle -\sqrt{2}|\downarrow \uparrow \downarrow \rangle +\sqrt{1+{\gamma }^2}|\uparrow \downarrow \downarrow \rangle -\sqrt{2}\gamma |\uparrow \uparrow \uparrow \rangle ). \end{aligned}$$

The projection operator \(T_{0}\) can be expressed as

$$\begin{aligned} T_0=\prod \limits _{l}^{N/3}(|\Uparrow \rangle _l\langle \phi _0|+|\Downarrow \rangle _l\langle \phi ^{'}_0|), \end{aligned}$$

where \(|\Uparrow \rangle _l\) and \(|\Downarrow \rangle _l\) are renamed states of each block to represent the effective site degrees of freedom.

The renormalization of Pauli matrices is defined by

$$\begin{aligned} T^l_0\sigma ^{\alpha }_{l,i}T^l_0=\zeta ^{\alpha }_l\sigma ^{'\alpha }_l,\quad \quad (i=1,2,3; \alpha =x,y) \end{aligned}$$

where

$$\begin{aligned} \zeta ^{x}_1=\xi ^{x}_3=\frac{1+\gamma }{\sqrt{2(1+{\gamma }^2)}},\quad \zeta ^{x}_2=-\frac{(1+\gamma )^2}{2(1+{\gamma }^2)},\\ \quad \zeta ^{y}_1=\xi ^{y}_3=\frac{1-\gamma }{\sqrt{2(1+{\gamma }^2)}},\quad \zeta ^{y}_2=-\frac{(1-\gamma )^2}{2(1+{\gamma }^2)}. \end{aligned}$$

The effective Hamiltonian of the renormalized chain can be expressed as

$$\begin{aligned} H^\mathrm{{eff}}= \frac{J^{'}}{4}\sum ^{N/3}_{k=1}[(1+\gamma ^{'})\sigma ^{x}_{k}\sigma ^{x}_{k+1}+(1-\gamma ^{'})\sigma ^{y}_{k}\sigma ^{y}_{k+1}], \end{aligned}$$

where the parameters are

$$\begin{aligned} J^{'}=J{\frac{3\gamma ^{2}+1}{2(\gamma ^{2}+1)}},\quad \gamma ^{'}=\frac{\gamma ^{3}+3\gamma }{3\gamma ^{2}+1}. \end{aligned}$$

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

He, J., Fu, S. Renormalization of magic and quantum phase transition in spin models. Quantum Inf Process 22, 161 (2023). https://doi.org/10.1007/s11128-023-03905-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11128-023-03905-6

Keywords

Navigation