Skip to main content
Log in

Spectra in Coherent States with Excited-de Sitter Mode during Inflation

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

We use an excited-de Sitter mode as the fundamental mode function for the far past time limit during inflation, to study the corrections of spectra of curvature perturbation. Excited-de Sitter mode is actually the approximate solution of the inflaton field equation that asymptotically approaches to the de Sitter mode function in the first approximation. We build coherent state over excited-de Sitter mode. Then, we compute spectrum of the curvature perturbation with this coherent state as the initial state. We show that in this case, the spectrum of curvature perturbation is scale dependent. As a important result of using this coherent state, we find a non-zero non-Gaussian one-point function as a possible tiny source for generation of anisotropy in CMB from the initial mode in the string or Planck scale.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. If Λ is the Planck scale, \(\frac {H}{\Lambda }\) is at most 10−4. If Λ is the string scale, \(\frac {H}{\Lambda }\) could possibly be 10−2 [24].

References

  1. Guth, A.H.: The inflationary universe: A possible solution to the horizon and flatness problems. Phys. Rev. D 23, 347 (1981)

    Article  ADS  Google Scholar 

  2. Linde, A.: Particles Physics and Inflationary Cosmology. Harwood Academic, Reading (1991)

    Google Scholar 

  3. Bunch, T.S., Davies, P.C.W.: Quantum field theory in de sitter space: Renormalization by point splitting. Proc. Roy. Soc. Lond. A 360, 117 (1978)

    Article  ADS  MathSciNet  Google Scholar 

  4. Bahrami, S., Flanagan, E.E.: Primordial non-Gaussianities in single field inflationary models with nontrivial initial states, arXiv:astro-ph/1310.4482

  5. Xue, W., Chen, B.: α-vacuum and inflationary bispectrum. Phys. Rev. D 79 (2009). arXiv:hep-th/0806.4109

  6. Agarwal, N., Holman, R., Tolley, A.J., Lin, J.: Effective field theory and non-Gaussianity from general inflationary states. JHEP 1305, 085 (2013). arXiv:hep-th/1212.1172

    Article  ADS  MathSciNet  Google Scholar 

  7. Nitti, F., Porrati, M., J.-W.: Rombouts, naturalness in cosmological initial conditions. Phys. Rev. D 72, 063503 (2005). arXiv:hep-th/0503247

    Article  ADS  Google Scholar 

  8. Porrati, M.: Effective field theory approach to cosmological initial conditions: Self-consistency bounds and non-Gaussianities. arXiv:hep-th/0409210

  9. Aravind, A., Lorshbough, D., Paban, S.: Non-Gaussianity from excited initial inflationary states. JHEP 07, 076 (2013). arXiv:hep-th/1303.1440

    Article  ADS  MathSciNet  Google Scholar 

  10. Kundu, S.: Inflation with general initial conditions for scalar perturbations. JCAP 1202, 005 (2012). arXiv:astro-ph/1110.4688

    Article  ADS  Google Scholar 

  11. Kundu, S.: Non-Gaussianity consistency relations, initial states and back-reaction. arXiv:astro-ph/1311.1575

  12. Ashoorioon, A., Shiu, G.: A note on calm excited states of inflation. JCAP 1103, 025 (2011). arXiv:1012.3392

    Article  ADS  Google Scholar 

  13. Agullo, I., Parker, L.: Non-gaussianities and the stimulated creation of quanta in the inflationary universe. Phys. Rev. D 83, 063526 (2011). arXiv:astro-ph/1010.5766

    Article  ADS  Google Scholar 

  14. Birrel, N.D., Davis, P.C.: Quantum Fields in Curved Space. Cambridge University Press, Cambridge (1982)

    Book  Google Scholar 

  15. Linde, A.D.: Inflationary Cosmology and Particle Physics. Harwood (1990)

  16. Mohsenzadeh, M., Tanhayi, M.R., Yusofi, E.: Eur. Phys. J. C 74, 2920 (2014). doi:10.1140/epjc/s10052-014-2920-5. arXiv:hep-th/1306.6722

    Article  ADS  Google Scholar 

  17. Yusofi, E., Mohsenzadeh, M.: Non-linear trans-planckian corrections of spectra due to the non-trivial initial states. Phys. Lett. 737B, 261 (2014)

    Article  ADS  Google Scholar 

  18. Baumann, D.: TASI Lectures on Inflation, TASI. arXiv:hep-th/0907.5424 (2009)

  19. Mukhanov, V.: Physical Foundations of Cosmology (2001)

  20. Armendariz-Picon, C., Lim, E.A.: JCAP 0312, 006 (2003). arXiv:hep-th/0303103

    Article  ADS  Google Scholar 

  21. Kaloper, N., Kleban, M., Lawrence, A.E., Shenker, S.: Signatures of short distance physics in the cosmic microwave background. Phys. Rev. D 66, 123510 (2002). arXiv:hep-th/0201158

    Article  ADS  Google Scholar 

  22. Ade, P.A.R., et al.: Planck 2013 Results. XXII. Constraints on Inflation. arXiv:astro-ph/1303.5082

  23. Unnikrishnana, S., Sahni, V.: Resurrecting power law inflation in the light of planck results. JCAP 10, 063 (2013). arXiv:astro-ph/1305.5260

    Article  ADS  Google Scholar 

  24. Danielsson, U.H.: A note on inflation and transplanckian physics. Phys. Rev. D 66, 023511 (2002). arXiv:hep-th/0203198

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to thank M.V. Takook and M. R. Tanhayi for useful comments. This work has been supported by the Islamic Azad University, Qom Branch, Qom, Iran.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Mohsenzadeh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohsenzadeh, M., Yusofi, E. Spectra in Coherent States with Excited-de Sitter Mode during Inflation. Int J Theor Phys 55, 1300–1306 (2016). https://doi.org/10.1007/s10773-015-2770-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-015-2770-4

Keywords

Navigation