Skip to main content
Log in

Renormalization Method in p-Adic λ-Model on the Cayley Tree

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In the present paper, it is proposed the renormalization techniques in the investigation of phase transition phenomena in p-adic statistical mechanics. We mainly study p-adic λ-model on the Cayley tree of order two. We consider generalized p-adic quasi Gibbs measures depending for the λ-model. Such measures are constructed by means of certain recurrence equation, which defines a dynamical system. We study two regimes with respect to parameters. In the first regime we establish that the dynamical system has one attractive and two repelling fixed points, which predicts the existence of a phase transition. In the second regime the system has two attractive and one neutral fixed points, which predicts the existence of a quasi phase transition. A main point of this paper is to verify (i.e. rigorously prove) and confirm that the indicated predictions (via dynamical systems point of view) are indeed true. To establish the main result, we employ the methods of p-adic analysis, and therefore, our results are not valid in the real setting.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We point out that stochastic processes on the field \(\mathbb {Q}_{p}\) of p-adic numbers with values of real numbers have been studied by many authors, for example, [14, 44, 45, 83]. In those works wide classes of Markov processes on \(\mathbb {Q}_{p}\) were constructed and studied. In our case, the situation is different, since probability measures take their values in \(\mathbb {Q}_{p}\). This leads our investigation to some difficulties. For example, there is no information about the compactness of p-adic values probability measures.

  2. Note that in the last decade there are many papers devoted [41, 73] to the theory p-adic dynamical systems which shows that this theory is rapidly growing. We remark that first investigations of non-Archimedean dynamical systems have appeared in [28]. We also point out that the intensive development of p-adic (and more general algebraic) dynamical systems has happened a few years ago (for example, see [6, 9, 10, 17, 20, 33, 46, 60, 65, 78, 84]). More extensive lists may be found in the p-adic dynamics bibliography maintained by Silverman [74].

  3. In the real case, when the state space is compact, then the existence follows from the compactness of the set of all probability measures (i.e. Prohorov’s Theorem). When the state space is non-compact, then there is a Dobrushin’s Theorem [14, 15] which gives a sufficient condition for the existence of the Gibbs measure for a large class of Hamiltonians.

References

  1. Albeverio, S., Karwowski, W.: A random walk on p-adics, the generator and its spectrum. Stochastic. Process. Appl. 53, 1–22 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  2. Albeverio, S., Zhao, X.: On the relation between different constructions of random walks on p-adics. Markov Process. Related Fields 6, 239–256 (2000)

    MathSciNet  MATH  Google Scholar 

  3. Albeverio, S., Zhao, X.: Measure-valued branching processes associated with random walks on p-adics. Ann. Probab. 28, 1680–1710 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  4. Albeverio, S., Khrennikov, A. Yu., Shelkovich, V.M.: Theory of p-adic Distributions. Linear and Nonlinear Models. Cambridge University Press, Cambridge (2010)

    Book  MATH  Google Scholar 

  5. Albeverio, S., Rozikov, U., Sattorov, I.A.: p-adic (2,1)-rational dynamical systems. J. Math. Anal. Appl. 398, 553–566 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  6. Anashin, V., Khrennikov A.: Applied Algebraic Dynamics. Berlin, New York (2009)

  7. Areféva, I. Ya., Dragovic, B., Volovich, I.V.: p-adic summability of the anharmonic ocillator. Phys. Lett. B 200, 512–514 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  8. Areféva, I. Ya., Dragovic, B., Frampton, P.H., Volovich, I.V.: The wave function of the Universe and p-adic gravity. Int. J. Modern Phys. A 6, 4341–4358 (1991)

  9. Arrowsmith, D.K., Vivaldi, F.: Some p−adic representations of the Smale horseshoe. Phys. Lett. A 176, 292–294 (1993)

    Article  MathSciNet  ADS  Google Scholar 

  10. Arrowsmith, D.K., Vivaldi, F.: Geometry of p-adic Siegel discs. Physica D 71, 222–236 (1994)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Avetisov, V.A., Bikulov, A.H., Kozyrev, S.V.: Application of padic analysis to models of spontaneous breaking of the replica symmetry. J. Phys. A: Math. Gen. 32, 8785–8791 (1999)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  12. Baxter, R.J.: Exactly Solved Models in Statistical Mechanics. Academic Press, London (1982)

    MATH  Google Scholar 

  13. Beltrametti, E., Cassinelli, G.: Quantum mechanics and p− adic numbers. Found. Phys. 2, 1–7 (1972)

    Article  MathSciNet  ADS  Google Scholar 

  14. Dobrushin, R.L.: The problem of uniqueness of a Gibbsian random field and the problem of phase transitions. Funct. Anal. Appl. 2, 302–312 (1968)

    Article  MATH  Google Scholar 

  15. Dobrushin, R.L.: Prescribing a system of random variables by conditional distributions. Theor. Probab. Appl. 15, 458–486 (1970)

    Article  MATH  Google Scholar 

  16. Doplicher, S., Fredenhagen, K., Roberts, J.E.: The quantum structure of spacetime at the Planck scale and quantum fields. Commun. Math. Phys. 172, 187–220 (1995)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  17. Dragovich, B., Khrennikov, A., Mihajlovic, D.: Linear fraction p-adic and adelic dynamical systems. Rep. Math. Phys. 60, 55–68 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Dragovich, B., Khrennikov, A., Kozyrev, S.V., Volovich, I.V.: On p-adic mathematical physics. P-Adic Numbers, Ultrametric Analysis, and Applications 1, 1–17 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Efetov, K.B.: Supersymmetry in disorder and chaos. Cambridge University Press, Cambridge (1997)

    MATH  Google Scholar 

  20. Fan, A.H., Liao, L.M., Wang, Y.F., Zhou, D.: p-adic repellers in Q p are subshifts of finite type. C. R. Math. Acad. Sci Paris 344, 219–224 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  21. Fan, A.H., Fan, S., Liao, L.M., Wang, Y.F.: On minimal decomposition of p-adic homographic dynamical systems. Adv. Math. 257, 92–135 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Fisher, M.E.: The renormalization group in the theory of critical behavior. Rev. Mod. Phys. 46, 597–616 (1974)

    Article  ADS  Google Scholar 

  23. Freund, P.G.O., Olson, M.: Non-Archimedian strings. Phys. Lett. B 199, 186–190 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  24. Gandolfo, D., Rozikov, U., Ruiz, J.: On p-adic Gibbs measures for hard core model on a Cayley Tree. Markov Proc. Rel. Topics 18, 701–720 (2012)

    MathSciNet  MATH  Google Scholar 

  25. Ganikhodjaev, N.N., Mukhamedov, F.M., Rozikov, U.A.: Phase transitions of the Ising model on \(\mathbb {Z}\) in the p-adic number field. Uzbek. Math. J. 4, 23–29 (1998). (Russian)

    Google Scholar 

  26. Ganikhodjaev, N.N., Mukhamedov, F.M., Rozikov, U.A.: Exsistence of phase transition for the Potts p-adic model on the set Z. Theor. Math. Phys. 130, 425–431 (2002)

    Article  Google Scholar 

  27. Georgii, H.O.: Gibbs measures and phase transitions. Walter de Gruyter, Berlin (1988)

    Book  MATH  Google Scholar 

  28. Herman, M., Yoccoz, J.-C.: Generalizations of some theorems of small divisors to non-Archimedean fields. In: Geometric Dynamics (Rio de Janeiro, 1981), Lec. Notes in Math 1007, pp 408–447. Springer, Berlin (1983)

  29. Khamraev, M., Mukhamedov, F.M.: On p-adic λ-model on the Cayley tree. Jour. Math. Phys. 45, 4025–4034 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  30. Khamraev, M., Mukhamedov, F.: On a class of rational p-adic dynamical systems. Jour. Math. Anal. Appl. 315, 76–89 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  31. Khamraev, M., Mukhamedov, F.M., Rozikov, U.A.: On uniqueness of Gibbs measure for p-adic λ-model on the Cayley tree. Lett. Math. Phys. 70(1), 17–28 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  32. Khrennikov, A.Yu.: p-adic valued probability measures. Indag. Mathem. N.S. 7, 311–330 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  33. Khrennikov, A.Yu.: p-adic description of chaos. In: Alfinito, E., Boti, M. (eds.) Nonlinear Physics: Theory and Experiment, pp 177–184. WSP, Singapore (1996)

  34. Khrennikov, A.Yu.: p-adic Valued Distributions in Mathematical Physics. Kluwer Academic Publisher, Dordrecht (1994)

    Book  MATH  Google Scholar 

  35. Khrennikov, A.Yu.: Non-Archimedean analysis: quantum paradoxes, dynamical systems and biological models. Kluwer Academic Publisher, Dordrecht (1997)

    Book  MATH  Google Scholar 

  36. Khrennikov, A.Yu.: Generalized probabilities taking values in non-Archimedean fields and in topological Groups. Russian J. Math. Phys. 14, 142–159 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  37. Khrennikov, A.Yu., Kozyrev, S.V.: Ultrametric random field. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 9, 199–213 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  38. Khrennikov, A.Yu., Kozyrev, S.V.: Replica symmetry breaking related to a general ultrametric space I, II, III, Physica A 359, 222–240; 241–266 (2006); 378, 283–298 (2007)

  39. Khrennikov, A.Yu., Ludkovsky, S.: Stochastic processes on non-Archimedean spaces with values in non-Archimedean fields. Markov Process. Related Fields 9, 131–162 (2003)

    MathSciNet  MATH  Google Scholar 

  40. Khrennikov, A., Mukhamedov, F., Mendes, J.F.F.: On p-adic Gibbs measures of countable state Potts model on the Cayley tree. Nonlinearity 20, 2923–2937 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  41. Khrennikov, A.Yu., Nilsson, M.: p-adic deterministic and random dynamical systems. Kluwer, Dordreht (2004)

    Book  Google Scholar 

  42. Khrennikov, A.Yu., Yamada, S., van Rooij, A.: Measure-theoretical approach to p-adic probability theory. Annals Math. Blaise Pascal 6, 21–32 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  43. Koblitz, N.: p-adic numbers, p-adic analysis and zeta-function. Springer, Berlin (1977)

    Book  Google Scholar 

  44. Kochubei, A.N.: Pseudo-differential equations and stochastics over non-Archimedean fields, Mongr. Textbooks Pure Appl. Math, vol. 244. Marcel Dekker, New York (2001)

    Book  Google Scholar 

  45. Kozyrev, S.V.: Wavelets and spectral analysis of ultrametric pseudodifferential operators. Sbornik Math 198, 97–116 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  46. Lubin, J.: Nonarchimedean dynamical systems. Composito Math. 94, 321–346 (1994)

    MathSciNet  MATH  Google Scholar 

  47. Ludkovsky, S.V.: Non-Archimedean valued quasi-invariant descending at infinity measures. Int. J. Math. Math. Sci. 2005(23), 3799–3817 (2005)

    Article  MathSciNet  Google Scholar 

  48. Yu, M.: New dimensions in Geometry, Lecture Notes in Mathematics 1111, pp 59–101. Springer, New York (1985)

    Google Scholar 

  49. Marinary, E., Parisi, G.: On the p-adic five point function. Phys. Lett. B 203, 52–56 (1988)

    Article  MathSciNet  ADS  Google Scholar 

  50. Monna, A., Springer, T.: Integration non-Archimedienne 1, 2. Indag. Math. 25, 634–653 (1963)

    Article  MathSciNet  Google Scholar 

  51. Mukhamedov, F.M.: On factor associated with the unordered phase of λ-model on a Cayley tree. Rep. Math. Phys. 53, 1–18 (2004)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  52. Mukhamedov, F.: On p-adic quasi Gibbs measures for q+1-state Potts model on the Cayley tree. P-adic Numbers, Ultametric Anal. Appl. 2, 241–251 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  53. Mukhamedov, F.: A dynamical system appoach to phase transitions p-adic Potts model on the Cayley tree of order two. Rep. Math. Phys. 70, 385–406 (2012)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  54. Mukhamedov, F.: On dynamical systems and phase transitions for Q+1-state p-adic Potts model on the Cayley tree. Math. Phys. Anal. Geom. 53, 49–87 (2013)

    Article  MathSciNet  Google Scholar 

  55. Mukhamedov, F.: On strong phase transition for one dimensional countable state p-adic Potts model. J. Stat. Mech., P01007 (2014)

  56. Mukhamedov, F., Akin, H.: On non-Archimedean recurrence equations and their applications. J. Math. Anal. Appl. 423, 1203–1218 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  57. Mukhamedov, F., Akin, H.: On p-adic Potts model on the Cayley tree of order three. Theor. Math. Phys. 176, 1267–1279 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  58. Mukhamedov, F., Dogan, M.: On p-adic λ-model on the Cayley tree II: phase transitions. Rep. Math. Phys. (accepted)

  59. Mukhamedov, F., Dogan, M., Akin, H.: Phase transition for the p-adic Ising-Vannimenus model on the Cayley tree. Jour. Stat. Mech., P10031 (2014)

  60. Mukhamedov, F., Mendes, J.F.F.: On the chaotic behavior of a generalized logistic p-adic dynamical system. Jour. Diff. Eqs. 243, 125–145 (2007)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  61. Mukhamedov, F., Omirov, B., Saburov, M.: On cubic equations over p-adic fields. Inter. J. Number Theory 10, 1171–1190 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  62. Mukhamedov, F.M., Rozikov, U.A.: On Gibbs measures of p-adic Potts model on the Cayley tree. Indag. Math. N. S. 15, 85–100 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  63. Mukhamedov, F.M., Rozikov, U.A.: On inhomogeneous p-adic Potts model on a Cayley tree. Infin. Dimens. Anal. Quantum Probab. Relat. Top. 8, 277–290 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  64. Mukhamedov, F.M., Rozikov, U.A.: On rational p-adic dynamical systems. Methods Funct. Anal. and Topology 10(2), 21–31 (2004)

    MathSciNet  MATH  Google Scholar 

  65. Mukhamedov, F., Rozikov, U.: On one polynomial p-adic dynamical system. Ther. Math. Phys. 170, 377–384 (2012)

    MathSciNet  Google Scholar 

  66. Ostilli, M.: Cayley trees and Bethe lattices: A concise analysis for mathematicians and physicists. Physica A 391, 3417–3423 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  67. Rivera-Letelier, J.: Dynamics of rational functions over local fields. Astérisque 287, 147–230 (2003)

    MathSciNet  Google Scholar 

  68. van Rooij, A.: Non-archimedean functional analysis. Marcel Dekker, New York (1978)

    MATH  Google Scholar 

  69. Rozikov, U.A.: Description of limit Gibbs measures for λ-models on the Bethe lattice. Siber. Math. J. 39, 373–380 (1998)

    Article  MathSciNet  Google Scholar 

  70. Rozikov, U.A.: Gibbs Measures on Cayley Trees. World Scientific (2013)

  71. Rozikov, U., Sattorov, I.A.: On a nonlinear p-adic dynamical system. P-Adic Numbers, Ultram. Anal. Appl. 6, 54–65 (2014)

    Article  MATH  Google Scholar 

  72. Schikhof, W.H.: Ultrametric Calculus. Cambridge University Press, Cambridge (1984)

    MATH  Google Scholar 

  73. Silverman, J.H.: The arithmetic of dynamical systems. Graduate Texts in Mathematics 241. Springer, New York (2007)

    Book  Google Scholar 

  74. Silverman, J.H.: www.math.brown.edu/jhs/MA0272/ArithDynRefsOnly.pdf

  75. Shiryaev, A.N.: Probability. Nauka, Moscow (1980)

    MATH  Google Scholar 

  76. Snyder, H.S.: Quantized Space-Time. Phys. Rev. 7, 38 (1947)

    Article  ADS  Google Scholar 

  77. Tauber, U.C.: Renormalization Group: Applications in Statistical Physics. Nuclear Phys. B (Proc. Suppl.) 228, 7–34 (2012)

    Article  MathSciNet  ADS  Google Scholar 

  78. Thiran, E., Verstegen, D., Weters, J.: p-adic dynamics. J. Stat. Phys. 54, 893–913 (1989)

    Article  ADS  MATH  Google Scholar 

  79. Vladimirov, V.S., Volovich, I.V., Zelenov, E.I.: p-adic Analysis and Mathematical Physics. World Scientific, Singapour (1994)

    Book  Google Scholar 

  80. Volovich, I.V.: Number theory as the ultimate physical theory, p-Adic Numbers, Ultrametric Analysis Appl. 2, 77–87; Preprint TH.4781/87 1987 (2010)

  81. Volovich, I.V.: p−adic string. Class. Quantum Gravity 4, L83–L87 (1987)

    Article  MathSciNet  ADS  Google Scholar 

  82. Wilson, K.G., Kogut, J.: The renormalization group and the 𝜖- expansion. Phys. Rep. 12, 75–200 (1974)

    Article  ADS  Google Scholar 

  83. Yasuda, K.: Extension of measures to infinite-dimensional spaces over p-adic field. Osaka J. Math. 37, 967–985 (2000)

    MathSciNet  MATH  Google Scholar 

  84. Woodcock, C.F., Smart, N.P.: p-adic chaos and random number generation. Experiment Math 7, 333–342 (1998)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The author thanks the MOE grant ERGS13-024-0057, the IIUM grant EDW B13-029-0914 and the Junior Associate scheme of the Abdus Salam International Centre for Theoretical Physics, Trieste, Italy.

Finally, the author also would like to thank referees for their useful suggestions which allowed him to improve the content of the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farrukh Mukhamedov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mukhamedov, F. Renormalization Method in p-Adic λ-Model on the Cayley Tree. Int J Theor Phys 54, 3577–3595 (2015). https://doi.org/10.1007/s10773-015-2597-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-015-2597-z

Keywords

Navigation