Skip to main content
Log in

Open and Closed World Models in Kaluza-Klein-Theory with Variables G and Λ

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The field equation of higher dimensions theory, have been applied in the area of cosmology. The resulting differential equations are solved for open and closed. We derive a relation between the Einstein constant G(t) and the cosmological constant Λ(t) from the conservation law T μ ν ;ν =0. We give a specific form of Λ(t) to solve the non-linear differential equations. Some cosmological parameters are calculated and some relevant cosmological problems are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. 1 In [52] solution of Eqs. (4), (5), (6), (9) has been obtained for the flat case and the relevant cosmological parameters are also calculated

References

  1. Perlmutter, S., et al.: Nature 391, 51 (1998)

    Article  ADS  Google Scholar 

  2. Perlmutter, S., et al.: Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  3. Reiess, A.G., et al.: Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  4. Reiess, A.G., et al.: Astron. J. 607, 665 (2004)

    Article  Google Scholar 

  5. Sahni, V.: The Cosmological constant problem and quintessence. Class. Quantum Grav. 19, 3435–3448 (2002)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  6. Lahav, O., Liddle, A. R.: Review of particle physics. Particle data group. Phys. Lett. B 592, 1–5 (2004)

    ADS  Google Scholar 

  7. Kamenshchik, A. Y., Moschella, U., Pasquier, V.: An alternative to quintessence. Phys. Lett. B 511, 265–268 (2001)

    Article  ADS  Google Scholar 

  8. Zhu, Z.-H., Fujimoto, M.-K.: Constraints on Cardassian expansion from distant type Ia supernovae. Astrophys. J. 585, 52–56 (2003)

    Article  ADS  Google Scholar 

  9. Sen, S., Sen, A.: Observational constraints on Cardassian expansion. Astrophys. J. 588, 1–6 (2003)

    Article  ADS  Google Scholar 

  10. Godlowski, W., Szydlowski, M., Krawiec, A.: Constraints on a Cardassian model from SNIa data - revisited. Astrophys. J. 605, 599–606 (2004)

    Article  ADS  Google Scholar 

  11. Godlowski, W., Szydlowski, M., Krawiee, A.: Brane universes tested by Supernovae Ia . Gen. Relativ. Gravit. 36, 767–797 (2004)

    Article  MATH  ADS  Google Scholar 

  12. Godlowski, W., Stelmach, J., Szydlowski, M.: Can the Stephani model be an alternative to FRW accelerating models? Class. Quantum Grav. 21, 3953–3973 (2004)

    Article  MATH  ADS  Google Scholar 

  13. Puetzfeld, D., Chen, X.: Testing non-standard cosmological models with supernovae. Class. Quantum Grav. 21, 2703–2723 (2004)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  14. Biesiada, M., Godlowski, W., Szydlowski, M.: Generalized chaplygin gas models tested with type Ia supernovae. Astrophys. J. 622, 28–39 (2005)

    Article  ADS  Google Scholar 

  15. Caldwell, R. R.: Spintessence! New models for dark matter and dark energy. Phys. Lett. B 545, 17–22 (2002)

    ADS  Google Scholar 

  16. Carroll, S. M., Hofman, M., Trodden, M.: Can the dark energy equation-of-state parameter w be less than -1? Phys. Rev. D 68, 023509–0235020 (2003)

    ADS  Google Scholar 

  17. Hsu, S. D. H., Jenkins, A., Wise, M. B.: Gradient instability for. Phys. Lett. B 597, 270–274 (2004)

    Article  ADS  Google Scholar 

  18. Overdwin, J. M., Wesson, P. S.: Phys. Rep. 283, 303–387 (1997)

    Article  ADS  MathSciNet  Google Scholar 

  19. Maartans, R.: Living Reviews in Relativity /lrr 2004-7

  20. Pradhan, A., Khadekar, G. S., Patki, V., Otarod, S.: Int. J. Theor. Phys. 47, 1751–1763 (2008)

    Article  Google Scholar 

  21. Kaluza, T., Unitätsproblem, Z.: On the problem of unity in physics. der Physik, Sitz. Preuss. Akad. Wiss. Phys. Math. K1, 966–972 (1921)

    Google Scholar 

  22. Klein, O.: Quantum theory and five-dimensional theory of relativity. Quantentheorie und fünfdimensionale Relativitätstheorie, Zeits. Phys. 37, 895–906 (1926)

    Article  MATH  Google Scholar 

  23. Bergmann, P. G.: Comments on the scalar-tensor theory. Int. J. Theor. Phys. 1, 25–36 (1968)

    Article  Google Scholar 

  24. Wagoner, R. V.: Scalar-tensor theory and gravitational waves. Phys. Rev. D1, 3209–3216 (1970)

    ADS  Google Scholar 

  25. Linde, A. D.: Is the Lee constant a cosmological constant?. JETP Lett. 19, 183–185 (1974)

    ADS  MathSciNet  Google Scholar 

  26. Endo̅, M., Fukui, T.: The cosmological term and a modified Brans-Dicke cosmology. Gen. Rel. Grav. 8, 833–839 (1977)

    Article  ADS  Google Scholar 

  27. Canuto, V., Hsieh, S. H., Adams, P. J.: Scale-covariant theory of gravitation and astrophysical applications. Phys. Rev. Lett. 39, 429–432 (1977)

    Article  MATH  ADS  Google Scholar 

  28. Kazanas, D.: Dynamics of the universe and spontaneous symmetry breaking. Astrophys. J. Lett. 241, L59–L63 (1980)

    Article  ADS  Google Scholar 

  29. Polyakov, A. M.: Phase transitions and the universe. Sov. Phys. Usp. 25, 187 (1982). [Usp. Fiz. Nauk 136 (1982) 538]

    Article  ADS  Google Scholar 

  30. Adler, S. L.: Einstein gravity as a symmetry-breaking effect in quantum field theory. Rev. Mod. Phys. 54, 729–766 (1982)

    Article  ADS  Google Scholar 

  31. Dolgov, A. D.: The Very Early Universe, p. 449. In: Gibbons, G.W., Hawking, S.W., Siklos, S.T.C. (eds.) Cambridge University Press (1983)

  32. Abbott, L. F.: A mechanism for reducing the value of the cosmological constant. Phys. Lett. B150, 427–430 (1985)

    Article  ADS  MathSciNet  Google Scholar 

  33. Banks, T.: T C P, Quantum gravity, the cosmological constant and all that...Nucl. Phys. B249, 332–360 (1985)

    Article  ADS  Google Scholar 

  34. Peccei, R. D., Solà, J., Wetterich, C.: Adjusting the cosmological constant dynamically: Cosmons and a new force weaker than gravity. Phys. Lett. B195, 183–190 (1987)

    Article  ADS  Google Scholar 

  35. Barr, S. M.: An attempt at a classical cancellation of the cosmological constant. Phys. Rev. D36, 1691–1715 (1987)

    ADS  MathSciNet  Google Scholar 

  36. Peebles, P. J. E., Ratra, B.: Cosmology with a time variable cosmological constant. Astrophys. J. Lett. 325, L17–L30 (1988)

    Article  ADS  Google Scholar 

  37. Fujii, Y., Nishioka, T.: Reconciling a small density parameter to inflation. Phys. Lett. B254, 347–354 (1991)

    Article  ADS  Google Scholar 

  38. Frieman, J. A., Hill, C. T., Stebbins, A., Waga, I.: Fermilab, Cosmology with ultralight pseudo Nambu-Goldstone bosons. Phys. Rev. Lett. 75, 2077–2080 (1995)

    Article  ADS  Google Scholar 

  39. Moffat, J. W.: How old is the universe? Phys. Lett. B357, 526–531 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  40. Hawking, S.W.: The cosmological constant is probably zero. Phys. Lett. B134, 403–404 (1984)

    Article  ADS  MathSciNet  Google Scholar 

  41. Banks, T.: Relaxation Of The cosmological constant. Phys. Rev. Lett. 52, 1461–1463 (1984)

    Article  ADS  Google Scholar 

  42. Brown, J. D., Teitelboim, C.: Dynamical neutralization of the cosmological constant. Phys. Lett. B195, 177–182 (1987)

    Article  ADS  Google Scholar 

  43. Dolgov, A. D.: Higher spin fields and the problem of cosmological constant. Phys. Rev. D55, 5881–5885 (1997)

    ADS  Google Scholar 

  44. Dolgov, A. D.: 4th Colloque Cosmologie, Paris, June, 1997, astro-ph/9708045 (1997)

  45. Linde, A. D.: Universe multiplication and the cosmological constant problem. Phys. Lett. B200, 272–274 (1988)

    Article  ADS  Google Scholar 

  46. Banks, T.: Prolegomena to a theory of bifurcating universes: a nonlocal solution to the cosmological constant problem or little lambda goes back to the future. Nucl. Phys. B309, 493–517 (1988)

    Article  ADS  Google Scholar 

  47. Coleman, S.: Why there is nothing rather than something: a theory of the cosmological constant. Nucl. Phys. B310, 643–677 (1988)

    Article  ADS  Google Scholar 

  48. Tsamis, N. C., Woodard, R. P.: Strong infrared effects in quantum gravity. Ann. Phys. (NY) 238, 1–82 (1995)

    Article  ADS  MathSciNet  Google Scholar 

  49. Brandenberger, R. H., Zhitnitsky, A. R.: Can asymptotic series resolve the problems of inflation? Phys. Rev. D55, 4640–4646 (1997)

    ADS  Google Scholar 

  50. Abramo, L. R. W., Brandenberger, R. H., Mukhanov, V. F.: The energy - momentum tensor for cosmological perturbations. Phys. Rev. D56, 3248–3257 (1997)

    ADS  Google Scholar 

  51. Weinberg, S.: The cosmological constant problem. Rev. Mod. Phys. 61, 1–23 (1989)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  52. Sharif, M.: Kaluza-Klein cosmology with varying G and ?. Astrophys. Space Sci. 334, 209–214 (2011)

    Article  MATH  ADS  Google Scholar 

  53. Sharif, M.: Kaluza-Klein cosmology with modified holographic dark energy. Gen. Relat. Grav. 43, 2885–2894 (2011)

    Article  MATH  ADS  MathSciNet  Google Scholar 

  54. Sahni, V., Saini, T. D., Starobinsky, A. A., Alam, U.: Statefinder: a new geometrical diagnostic of dark energy. JETP Lett. 77, 201–206 (2003)

    Article  ADS  Google Scholar 

  55. Wanas, M.I., Nashed, G.G.L., Nowaya, A.A.: Cosmological applications in Kaluza-Klein theory. Chin. Phys. B 21, 049801 (2012)

    Article  ADS  Google Scholar 

  56. Lu, J.-A., Huang, C.-G.: Class. Quantum Gravi. 30, 145004 (2013)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work is partially supported by the EgyptianMinistry of Scientific Research under project ID 24-2-12.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gamal G. L. Nashed.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

L. Nashed, G.G. Open and Closed World Models in Kaluza-Klein-Theory with Variables G and Λ. Int J Theor Phys 53, 3910–3926 (2014). https://doi.org/10.1007/s10773-014-2142-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-014-2142-5

Keywords

Navigation