Skip to main content
Log in

The Fractional Kinetic Einstein-Vlasov System and its Implications in Bianchi Spacetimes Geometry

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

The main purpose of this work is to introduce the basic concepts and global properties of the fractional Einstein-Vlasov equation based on the fractional calculus of variations, mainly the fractional actionlike variational approach. We believe that kinetic theory in non-curved spacetimes is fundamental to a good understanding of kinetic theory in general relativity. Besides, the fractional calculus of variations has proved recently to be an important mathematical field of research which has been applied successfully to a broad range of physical and mathematical researches. We expect therefore that the merge of both fields will bring some new insights to general relativity and accordingly to its cosmological and astrophysical implications. Based on the new fractional settings, some cosmological applications are discussed in this work mainly within the aspects of Bianchi spacetimes geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Rendall, A.D.: Solutions of the Einstein equations with matter. In: Francaviglia, M., Longhi, G., Lusanna, L., Sorace, E. (eds.) Proceedings of the 14th International Conference on General Relativity and Gravitation, pp. 313-335. World Scientifc (1997)

  2. Nungesser, E., Andersson, L., Bose, S., Coley, A.A.: Gen. Rel. Grav. 46, 1628 (2013)

    Article  MathSciNet  Google Scholar 

  3. Andreasson, H.: Liv. Rev. Relativ. 14, 4 (2011)

    ADS  Google Scholar 

  4. Calogero, S., Heinzle, J.M.: SIAM J. Appl. Dyn. Syst. 9, 1244 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Heinzle, J.M., Uggla, C.: Class. Quant. Grav. 23, 3463 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Heinzle, J.M., Uggla, C.: Class. Quant. Grav. 26, 075016 (2009)

    Article  ADS  MathSciNet  Google Scholar 

  7. Lee, H.: Math. Proc. Camb. Phil. Soc. 137, 495 (2004)

    Article  MATH  Google Scholar 

  8. Lee, H.: J. Diff. Equ. 249, 1111 (2010)

    Article  ADS  MATH  Google Scholar 

  9. Nungesser, E.: Ann. Henri Poincaré 14, 967 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Nungesser, E.: J. Phys.: Conf. Series 314, 012095 (2011)

    ADS  Google Scholar 

  11. Nungesser, E.: Class. Quant. Grav. 27, 235025 (2010)

    Article  ADS  MathSciNet  Google Scholar 

  12. Rein, G., Rendall, A.D.: Comm. Math. Phys. 150(3), 561 (1992)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  13. Rein, G., Rendall, A.D.: Arch. Ration. Mech. Anal. 126(2), 183 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  14. Rein, G.: Math. Proc. Camb. Phil. Soc. 119, 739 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  15. Rendall, A.D.: Partial Differential Equations in General Relativity. Oxford University Press, Oxford (2008)

    MATH  Google Scholar 

  16. Rendall, A.D.: The Einstein-Vlasov system. In: The Einstein Equations and the Large Scale Behavior of Gravitational Fields. Birkhauser, Basel (2004)

    Google Scholar 

  17. Rendall, A.D.: J. Math. Phys. 37, 438 (1996)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  18. Rendall, A.D., Tod, K.P.: Class. Quant. Grav. 16, 1705 (1996)

    Article  ADS  MathSciNet  Google Scholar 

  19. Rendall, A.D., Uggla, C.: Class. Quant. Grav. 17, 4697 (2000)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  20. Rendall, A.D.: Gen. Rel. Grav. 34, 1277 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  21. Straumann, N.: astro-ph/0203330v1

  22. Tchapnda, S.B., Noutchegueme, N.: Math. Proc. Cambridge Philos. Soc. 138, 541 (2005)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  23. Tchapnda, S.B., Rendall, A.D.: Class. Quant. Grav. 20, 3037 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Deframos, M., Rendall, A.D.: Ann. Henri Poincare 6, 1137 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  25. Heinzle, J.M., Uggla, C.: Class. Quant. Grav. 23, 3463 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  26. Uggla, C., van Elst, H., Wainwright, J., Ellis, G.F.R.: Phys. Rev. D68, 103502 (2003)

    ADS  Google Scholar 

  27. Kandalkar, S., Khade, P., Gaikwad, M.: Turk. J. Phys. 36, 141 (2012)

    Google Scholar 

  28. Singh, M.K., Verna, M.K., Ram, S.: Int. J. Phys. 1, 77 (2013)

    Article  Google Scholar 

  29. Baleanu, D.: New applications of fractional variational principles. Rep. Math. Phys. 61(2), 199 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  30. Baleanu, D., Diethelm, K., Scalas, E., Trujillo, J.J.: Fractional Calculus: Models and Numerical Methods (Series on Complexity, Nonlinearity and Chaos). World Scientific Publishing Company (2012). ISBN-10: 9814355208

  31. Torres, D.F.M., Malinowska, A.B.: Introduction to the Fractional Calculus of Variations. Imperial College Press (2012). ISBN-978-1-84816-966-1

  32. El-Nabulsi, R.A., Torres, D.F.M.: J. Math. Phys. 49, 053521 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  33. El-Nabulsi, R.A.: Int. J. Appl. Math. 17, 299 (2005)

    MathSciNet  MATH  Google Scholar 

  34. El-Nabulsi, R.A.: Fiz. A14, 289 (2005)

    Google Scholar 

  35. El-Nabulsi, R.A.: Int. J. Theor. Phys. 51, 3978 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  36. El-Nabulsi, R.A.: Rom. Rep. Phys. 49(3), 759 (2007)

    MathSciNet  Google Scholar 

  37. Shchigolev, V.K.: Discontinuity, Nonlinearity and Complexity 2(2), 115 (2013)

    MATH  Google Scholar 

  38. Calcagni, G.: Phys. Rev. Lett. 104, 251301 (2010)

    Article  ADS  Google Scholar 

  39. Jamil, M., Rashid, M.A., Momeni, D., Razina, O., Esmakhanova, K.: J. Phys.: Conf. Ser. 354, 012008 (2012)

    ADS  Google Scholar 

  40. Debnath, U., Chattopadhyay, S., Jamil, M.: J. Theor. Appl. Phys. 7, 25 (2013)

    Article  ADS  Google Scholar 

  41. Debnath, U., Jamil, M., Chattopadhyay, S.: Int. J. Theor. Phys. 51, 812 (2012)

    Article  MATH  Google Scholar 

  42. El-Nabulsi, R.A.: Fiz. B17, 369 (2008)

    ADS  MathSciNet  Google Scholar 

  43. El-Nabulsi, R.A.: Fiz. B19, 103 (2010)

    Google Scholar 

  44. Pasqua, A., Chattopadhyay, S.: Can. J. Phys. 91, 844 (2013)

    Article  Google Scholar 

  45. Chattopadhyay, S., Pasqua, A.: J. Theor. Appl. Phys. 7, 22 (2013)

    Article  Google Scholar 

  46. Abdelghani, M.: Kinetic Theory and the Einstein-Vlasov System. Lectures given at Department of Physics. University of Toronto, Toronto (2003)

    Google Scholar 

  47. Vamos, C.: Contributions to the Description by means of Continuous Field of the Corpuscular Systems. PhD thesis, Ed. Risoprint, Cluj-Napoca, (2007). ISBN 978-973-751-557-5

  48. Landau, L., Lifshitz, E.: Statistical Physics. Pergamon Press (1980)

  49. Kornfeld, I.P., Sinai, J.G., Fomin, S.V.: Ergodic Theory, sec. 2.2. Nauka, Moscow (1980)

  50. Tarasov, V.E.: J. Phys.: Conf. Ser. 7, 17 (2005)

    ADS  Google Scholar 

  51. Erza, G.E.: J. Math. Chem. 35, 29 (2004)

    Article  MathSciNet  Google Scholar 

  52. Tarasov, V.E.: Chaos 14, 123 (2004)

    Article  ADS  Google Scholar 

  53. Ren, F.-Y., Liang, J.-R., Wang, X.-T., Qiu, W.-Y.: Chaos, Solitons and Fractals 16, 107 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  54. Ringstrom, H.: On the Topology and Future Stability of the Universe. Oxford University Press, Oxford (2013)

    Book  Google Scholar 

  55. Nungesser, E., Andersson, L., Bose, S., Coley, A.A.: arXiv: 1305.7347

  56. Ellis, G.F.R., Wainwright, J.: Friedmann-Lemaitre universes. In: Wainwright, J., Ellis, G.F.R (eds.) Dynamical Systems in Cosmology. Cambridge University Press, Cambridge (1997)

  57. Rein, G.: Math. Proc. Camb. Phil. Soc. 119, 739 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  58. Njabo, S.B.T.: On the Einstein-Vlasov System with Cosmological Constant. PhD thesis, Tag der wissenschaftlichen Aussprache: 30. Juni 2004, von der Fakultat II- Mathematik und Naturwissenschaften der Technische Universitat Berlin

  59. Visser, M.: Phys. Rev. D56, 7578 (1997)

    ADS  Google Scholar 

  60. Peebles, P.J.E.: Principles of Physical Cosmology. Princeton University Press (1993)

  61. Lee, H.: Ann. Henri Poincaré 6, 697 (2005)

    Article  ADS  MATH  Google Scholar 

  62. Lee, H.: Accelerated Expanding models with Vlasov Matter. Talk given at Max-Planck Institute for Gravitational Physics, Albert Einstein Institute, Workshop Dynamical Systems, Germany, Sept-19 (2005)

  63. Riess, A.G., et al.: Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  64. Spergel, D.N., et al.: Astrophys. J. Suppl. 148, 175 (2003)

    Article  ADS  Google Scholar 

  65. Tegmark, M., et al.: Phys. Rev. D69, 103501 (2004)

    ADS  Google Scholar 

  66. Allen, S.W., et al.: Mon. Not. Roy. Astron. Soc. 353, 457 (2004)

    Article  ADS  Google Scholar 

  67. Li, M., Qui, T., Cai, Y., Zhang, X.: arXiv: 1112.4255

  68. Chen, Y.: arXiv: 1312.1443

  69. Alnes, H., Amarzguioui, M., Gron, O.: J. Cosmo. Astroparticle Phys. 0701, 007 (2007)

    Article  ADS  Google Scholar 

  70. El-Nabulsi, R.A.: Appl. Math. Comp. 62, 1568 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  71. Tatom, F.B.: Fractals 03, 217 (1995)

    Article  MathSciNet  Google Scholar 

  72. Christensen, S.M., Duff, M.J.: Phys. Lett. B79, 213 (1978)

    Article  ADS  Google Scholar 

  73. Calcagni, G.: JHEP03, 120 (2010)

Download references

Acknowledgments

I would like to thank the anonymous referees for their useful comments and valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rami Ahmad El-Nabulsi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Nabulsi, R.A. The Fractional Kinetic Einstein-Vlasov System and its Implications in Bianchi Spacetimes Geometry. Int J Theor Phys 53, 2712–2726 (2014). https://doi.org/10.1007/s10773-014-2067-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-014-2067-z

Keywords

Mathematics Subject Classifications (2010)

Navigation