Skip to main content
Log in

Fractional Action Cosmology: Emergent, Logamediate, Intermediate, Power Law Scenarios of the Universe and Generalized Second Law of Thermodynamics

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

In the framework of Fractional Action Cosmology (FAC), we study the generalized second law of thermodynamics for the Friedmann Universe enclosed by a boundary. We use the four well-known cosmic horizons as boundaries namely, apparent horizon, future event horizon, Hubble horizon and particle horizon. We construct the generalized second law (GSL) using and without using the first law of thermodynamics. To check the validity of GSL, we express the law in the form of four different scale factors namely emergent, logamediate, intermediate and power law. For Hubble, apparent and particle horizons, the GSL holds for emergent and logamediate expansions of the universe when we apply with and without using first law. For intermediate scenario, the GSL is valid for Hubble, apparent, particle horizons when we apply with and without first law. Also for intermediate scenario, the GSL is valid for event horizon when we apply first law but it breaks down without using first law. But for power law expansion, the GSL may be valid for some cases and breaks down otherwise.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Perlmutter, S., et al.: Astrophys. J. 517, 565 (1999)

    Article  ADS  Google Scholar 

  2. Riess, A.G., et al.: Astron. J. 116, 1009 (1998)

    Article  ADS  Google Scholar 

  3. Padmanabhan, T.: Curr. Sci. 88, 1057 (2005)

    ADS  Google Scholar 

  4. Copeland, E.J., Sami, M., Tsujikawa, S.: Int. J. Mod. Phys. D 15, 1753 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  5. Cai, Y.-F., Saridakis, E.N., Setare, M.R., Xia, J.-Q.: Phys. Rep. 493, 1 (2010)

    Article  MathSciNet  ADS  Google Scholar 

  6. Padmanabhan, T.: Phys. Rep. 380, 235 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  7. Peebles, P.J.E., Ratra, B.: Rev. Mod. Phys. 75, 559 (2003)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  8. Sahni, V.: Class. Quantum Gravity 19, 3435 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  9. Sahni, V.: Lect. Notes Phys. 653, 141 (2004)

    ADS  Google Scholar 

  10. Sahni, V., Starobinsky, A.: Int. J. Mod. Phys. D 15, 2105 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  11. Nojiri, S., Odintsov, S.D.: arXiv:1011.0544 [gr-qc]

  12. Harko, T., Lobo, F.S.N., Nojiri, S., Odintsov, S.D.: arXiv:1011.2669 [gr-qc]

  13. Nojiri, S., Odintsov, S.D., Tretyakov, P.V.: Phys. Lett. B 651, 224 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  14. Nojiri, S., Odintsov, S.D.: Phys. Lett. B 631, 1 (2005)

    Article  MathSciNet  ADS  Google Scholar 

  15. Freese, K., Lewis, M.: Phys. Lett. B 540, 1 (2002)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  16. Gondolo, P., Freese, K.: Phys. Rev. D 68, 063509 (2003)

    Article  ADS  Google Scholar 

  17. Copeland, E.J., Sami, M., Tsujikawa, S.: Int. J. Mod. Phys. D 15, 1753 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  18. Sahni, V., Shtanov, Y.: arXiv:0811.3839 [astro-ph]

  19. Sahni, V., Shtanov, Y.: J. Cosmol. Astropart. Phys. 0311, 014 (2003)

    Article  MathSciNet  ADS  Google Scholar 

  20. Debnath, U., Chattopadhyay, S., Jamil, M.: arXiv:1107.0541 [physics.gen-ph]

  21. Ghosh, R., Chattopadhyay, S., Debnath, U.: arXiv:1105.4538 [gr-qc]

  22. Debnath, U.: Class. Quantum Gravity 25, 205019 (2008)

    Article  MathSciNet  ADS  Google Scholar 

  23. Mukherjee, S., Paul, B.C., Dadhich, N.K., Maharaj, S.D., Beesham, A.: Class. Quantum Gravity 23, 6927 (2006)

    Article  MathSciNet  ADS  MATH  Google Scholar 

  24. del Campo, S., et al.: J. Cosmol. Astropont. Phys. 11, 030 (2007)

    Article  Google Scholar 

  25. Paul, B.C., et al.: Mon. Not. R. Astron. Soc. 407, 415 (2010)

    Article  ADS  Google Scholar 

  26. Barrow, J.D., Nunes, N.J.: Phys. Rev. D 76, 043501 (2007)

    Article  ADS  Google Scholar 

  27. Barrow, J.D., Liddle, A.R.: Phys. Rev. D 47, 5219 (1993)

    Article  ADS  Google Scholar 

  28. Khatua, P.B., Debnath, U.: Astrophys. Space Sci. 326, 53 (2010)

    Article  ADS  MATH  Google Scholar 

  29. Bekenstein, J.D.: Phys. Rev. D 9, 3292 (1974)

    Article  ADS  Google Scholar 

  30. Unruh, W.G., Wald, R.M.: Phys. Rev. D 25, 942 (1982)

    Article  ADS  Google Scholar 

  31. Richard, E., David, L.: Phys. Rev. Lett. 82, 4967 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  32. Setare, M.R.: J. Cosmol. Astropart. Phys. 0701, 023 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  33. Zhou, J., et al.: Phys. Lett. B 652, 86 (2007)

    Article  MathSciNet  ADS  Google Scholar 

  34. Sheykhi, A., Wang, B.: Phys. Rev. D 678, 434 (2009)

    Google Scholar 

  35. Chattopadhyay, S., Debnath, U.: IJMPA 25, 5557 (2010)

    ADS  MATH  Google Scholar 

  36. Chattopadhyay, S., Debnath, U.: Can. Phys. 88, 933 (2010)

    Article  ADS  Google Scholar 

  37. Izquierdo, G., Pavon, D.: Phys. Lett. B 633, 420 (2006)

    Article  MathSciNet  ADS  Google Scholar 

  38. Setare, M.R., Sheykhi, A.: Int. J. Mod. Phys. D 19, 171 (2010)

    Article  ADS  MATH  Google Scholar 

  39. Farajollahi, H., Salehi, A., Tayebi, F.: arXiv:1106.1764 [gr-qc]

  40. Jamil, M., Saridakis, E.N., Setare, M.R.: J. Cosmol. Astropart. Phys. 1011, 032 (2011)

    MathSciNet  ADS  Google Scholar 

  41. Sadjadi, H.M., Jamil, M.: Europhys. Lett. 92, 69001 (2010)

    Article  ADS  Google Scholar 

  42. Jamil, M., Saridakis, E.N., Setare, M.R.: Phys. Rev. D 81, 023007 (2010)

    Article  ADS  Google Scholar 

  43. Podlubny, I.: An Introduction to Fractional Derivatives, Fractional Differential Equations. Academic Press, New York (1999). To methods of their solution and some of their Applications

    MATH  Google Scholar 

  44. Hilfer, R. (ed.): Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)

    MATH  Google Scholar 

  45. Robert, M.: arXiv:0909.1171 [gr-qc]

  46. Shchigolev, V.K.: arXiv:1011.3304v1 [gr-qc]

  47. EL.Nabulsi, R.A.: Romanian Rep. Phys. 59, 763 (2007)

    Google Scholar 

  48. EL.Nabulsi, R.A.: Fizika B 19, 103 (2010)

    Google Scholar 

  49. Das, A., Chattopadhyay, S., Debnath, U.: arXiv:1104.2378 [physics.gen-ph]

  50. Chakraborty, W., Debnath, U.: Phys. Lett. B 661, 1 (2008)

    Article  ADS  Google Scholar 

  51. Chakraborty, W., Debnath, U.: Int. J. Theor. Phys. 48, 232 (2009)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Surajit Chattopadhyay.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Debnath, U., Jamil, M. & Chattopadhyay, S. Fractional Action Cosmology: Emergent, Logamediate, Intermediate, Power Law Scenarios of the Universe and Generalized Second Law of Thermodynamics. Int J Theor Phys 51, 812–837 (2012). https://doi.org/10.1007/s10773-011-0961-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-011-0961-1

Keywords

Navigation